장바구니 담기 close

장바구니에 상품을 담았습니다.

제미나이 인공지능 프로그래밍

제미나이 인공지능 프로그래밍

  • 후루카와 히데카즈
  • |
  • 길벗
  • |
  • 2025-05-13 출간
  • |
  • 388페이지
  • |
  • 183 X 235 X 16mm
  • |
  • ISBN 9791140713370
판매가

35,000원

즉시할인가

31,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
31,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

제미나이, 라마인덱스, 랭체인으로
코랩, 안드로이드, iOS 등 다양한 환경에서
나만의 맞춤 AI 애플리케이션을 만들어 보자!

제미나이(Gemini)는 텍스트, 이미지, 동영상, 음성 등 다양한 데이터를 처리하는 멀티모달 AI이며, 이를 활용하면 고급 AI 서비스를 만들 수 있다. 이 책은 구글 제미나이를 활용하여 ‘챗봇 AI’를 개발하는 입문서로, 제미나이를 활용하는 방법뿐만 아니라 제미나이 API를 사용하여 커스터마이징한 챗봇 AI를 만드는 방법을 단계별로 설명한다. 또한, 구글 클라우드 서비스인 구글 코랩, 안드로이드 스튜디오, 엑스코드에서도 구현할 수 있게 구성했다.
여기에 LLM 애플리케이션을 개발할 수 있는 프레임워크인 라마인덱스와 랭체인도 소개한다. 라마인덱스는 자기만의 데이터를 사용하여 질의응답을 하는 검색 증강 생성을 매우 쉽게 구축할 수 있는 프레임워크이며, 랭체인은 자연어 인터페이스로 API와 함수, 데이터베이스 등 도구를 조작하는 에이전트를 구축하는 데 적합한 프레임워크이다.
제미나이를 활용한 AI 프로젝트를 시작하려는 사람에게 추천하며 이 책을 통해 다양한 분야에서 AI를 활용할 수 있는 계기가 되길 바란다.

[베타 테스터 후기]
이 책은 제미나이 기본 사용법부터 랭체인까지 API와 허깅 페이스 모델 등을 활용한 AI 개발을 다루고 있으며, 현업에서 LLM 관련 연구 및 개발을 진행하는 입장에서 보았을 때, 이 책은 실무에 바로 적용할 수 있는 코드 예제가 풍부하여 실용적입니다. 특히 구글 코랩을 활용한 파이썬 코딩뿐만 아니라 안드로이드 스튜디오와 엑스코드 등 다양한 개발 환경에서도 단계별 실습을 진행할 수 있도록 구성되어 있어 제미나이를 처음 접하는 초보자에게 훌륭한 입문서가 될 것입니다.
이혜민_삼성전자 빅데이터센터 AI research engineer

이 책은 약간 생소한 제미나이 API를 쉽게 사용하는 방법을 다룹니다. 단순하게 데스크톱 애플리케이션만 만드는 예제뿐만 아니라 제미나이 나노를 활용한 안드로이드/iOS 개발 예제도 포함하기에 관련 앱을 개발하는 개발자에게 좋은 가이드를 제공합니다. 무엇보다 각 코드 예제를 스탭바이스탭으로 쉽게 설명하여 관련 지식이 없는 상태에서도 빠르게 따라 할 수 있는 부분이 좋았습니다. 후반부에 나오는 랭체인과 랭스미스의 연계를 다룬 예제는 제미나이 활용 범주를 좀 더 넓혀 주는 내용을 다루고 있어 전반적으로 생성형 AI 활용에서 도움을 받을 수 있었습니다.
강찬석_LG전자 소프트웨어 엔지니어


이 책은 제미나이 개발 이야기로 시작하여 버전별 특징과 사용법, 활용법 등 챗봇 사용자에게 유용한 정보들을 차근차근 알려 줍니다. 그다음에는 파이썬 등 서버 환경에서 제미나이를 활용하는 방법과 iOS와 안드로이드 같은 모바일 기기에서 내장해서 활용하는 방법 등 다양한 서비스 개발 방식도 소개합니다. 그뿐만 아니라 라마인덱스, 랭체인, 랭스미스, 벡터 스토어 등 도구를 활용하여 LLM을 튜닝하는 전문 기술까지 실습을 하면서 배울 수 있었습니다. 제미나이로 무언가를 시작하려는 사람에게 처음부터 끝까지 모든 것을 알려 주는 ‘종합 선물 세트’ 같은 책이라고 할 수 있습니다.
김병규_아이스크림에듀 AI연구소

이 책은 AI 기술과 프레임워크를 실용적으로 활용하는 방법을 체계적으로 다루고 있습니다. 제미나이 API를 구글 AI 스튜디오, 버텍스 AI 스튜디오, 안드로이드, iOS 환경에서 활용하는 방법을 명확히 설명하며, 라마인덱스와 랭체인의 개념과 응용을 심도 있게 다룹니다. 특히 검색 증강 생성(RAG) 구현과 간단한 에이전트 설계 등 실질적인 예제를 활용하여 독자 이해를 돕습니다. 초보자와 전문가 모두에게 유용하며, AI 기술을 프로젝트에 적용하려는 독자에게 강력히 추천할 만한 실용적인 가이드입니다.
박상길_소프트웨어 엔지니어

이 책은 제미나이를 활용하는 방법을 풍부하게 담고 있습니다. 그렇기에 제미나이를 처음 사용하는 경우라도 이해하는 데 전혀 문제없도록 내용을 구성한 것이 이 책의 장점이지 않을까 합니다. 또 제미나이 웹 서비스뿐만 아니라 구글 AI 스튜디오와 버텍스 AI, 제미나이 API 발급부터 해당 API를 활용한 모바일 앱 개발까지 설명하므로 제미나이를 활용하여 자신만의 챗봇 기반 서비스를 개발하려는 사람들에게 많은 도움이 되리라 생각합니다. 이 책으로 여러분도 제미나이가 지닌 매력에 흠뻑 빠져 볼 수 있길 바랍니다.
최성욱_삼성전자 VD사업부 Security Lab

이 책으로 최신 제미나이 2.5 모델과 윈도우용 코드로 실습하며 베타 테스트를 진행해 보았는데, 제미나이에 대한 이해가 훨씬 깊어졌음을 느낄 수 있었습니다.
이태희_UCA수퍼컴퓨팅아카데미 대표

목차

1장 제미나이 알아보기
1.1 제미나이 알아보기
__1.1.1 제미나이란
__1.1.2 제미나이 모델 종류
__1.1.3 대규모 언어 모델의 개요
__1.1.4 제미나이 API 알아보기
__1.1.5 대규모 언어 모델의 활용 사례
1.2 제미나이 시작
__1.2.1 제미나이 시작하기
__1.2.2 제미나이 어드밴스드
1.3 인공지능과 머신러닝, 딥러닝
__1.3.1 인공지능과 머신러닝, 딥러닝
__1.3.2 뉴런과 신경망
__1.3.3 모델 작성과 학습, 추론
1.4 자연어 처리와 딥러닝 모델
__1.4.1 자연어 처리 분야에서 딥러닝 모델 역사
__1.4.2 딥러닝 모델을 이용하여 이미지 처리하기
__1.4.3 딥러닝을 활용하여 음성 처리하기

2장 제미나이 사용
2.1 제미나이 사용법
__2.1.1 제미나이 화면 구성
__2.1.2 제미나이에서 실행할 수 있는 주요 작업
2.2 구글 AI 스튜디오 사용법
__2.2.1 구글 AI 스튜디오 시작하기
__2.2.2 구글 AI 스튜디오의 화면 구성
__2.2.3 API 키 가져오기
__2.2.4 새 프롬프트 작성과 모델 튜닝, 라이브러리
__2.2.5 문서
__2.2.6 설정
__2.2.7 도구 모음
__2.2.8 시스템 지시
__2.2.9 프롬프트 실행하기
__2.2.10 실행 설정하기
2.3 버텍스 AI 스튜디오 사용법
__2.3.1 버텍스 AI 스튜디오 시작하기
__2.3.2 버텍스 AI 제미나이 API 사용 요금
__2.3.3 버텍스 AI 스튜디오의 화면 구성
__2.3.4 왼쪽 메뉴
__2.3.5 도구 모음
__2.3.6 시스템 지시
__2.3.7 프롬프트 실행하기
__2.3.8 실행 설정하기

3장 파이썬 개발 환경 준비
3.1 파이썬 개요
__3.1.1 파이썬이란
3.2 구글 코랩 알아보기
__3.2.1 구글 코랩이란
__3.2.2 구글 코랩 시작하기
__3.2.3 파이썬 스크립트 실행하기
__3.2.4 파이썬 패키지 설치하기
__3.2.5 텍스트 추가하기
__3.2.6 구글 코랩의 화면 구성하기
__3.2.7 구글 코랩의 메뉴
__3.2.8 GPU 사용하기
__3.2.9 구글 드라이브 마운트
__3.2.10 구글 코랩의 사용 한도와 대책
__3.2.11 구글 코랩의 요금제
3.3 파이썬 기초 문법
__3.3.1 문자열 출력하기
__3.3.2 변수와 연산자
__3.3.3 문자열
__3.3.4 리스트
__3.3.5 딕셔너리
__3.3.6 튜플
__3.3.7 제어문
__3.3.8 함수와 람다식
__3.3.9 클래스
__3.3.10 패키지 임포트와 컴포넌트 직접 호출

4장 제미나이 API(파이썬 편)
4.1 텍스트 생성
__4.1.1 텍스트 생성의 개요
__4.1.2 제미나이 API의 개요
__4.1.3 구글 AI 제미나이 API의 개요
__4.1.4 구글 AI 제미나이 API의 요금
__4.1.5 API 키 가져오기
__4.1.6 제미나이 API 준비
__4.1.7 모델 목록 확인
__4.1.8 텍스트 생성
__4.1.9 스트리밍
__4.1.10 챗
__4.1.11 생성 파라미터
__4.1.12 토큰 수 확인
__4.1.13 안전 설정
__4.1.14 시스템 지시
__4.1.15 JSON 모드
4.2 멀티모달
__4.2.1 멀티모달 개요
__4.2.2 지원하는 파일 형식
__4.2.3 제미나이 API 준비하기
__4.2.4 이미지 질의응답
__4.2.5 File API를 사용한 이미지 질의응답
__4.2.6 음성 질의응답
__4.2.7 동영상 질의응답
4.3 임베딩
__4.3.1 임베딩 개요
__4.3.2 제미나이 API 준비
__4.3.3 임베딩 모델 종류
__4.3.4 text-embedding-004 사용법
__4.3.5 text-embedding-004를 활용한 이웃 탐색
__4.3.6 bge-m3 사용법
__4.3.7 bge-m3를 활용한 이웃 탐색
4.4 함수 호출
__4.4.1 함수 호출의 개요
__4.4.2 제미나이 API 준비하기
__4.4.3 자동 함수 호출하기
__4.4.4 도구 설정하기
__4.4.5 수동 함수 호출하기
__4.4.6 병렬 함수 호출하기
4.5 파인 튜닝
__4.5.1 파인 튜닝의 개요
__4.5.2 제미나이 API 요금
__4.5.3 파인 튜닝 모델 목록 가져오기
__4.5.4 학습 데이터 준비하기
__4.5.5 학습하기
__4.5.6 추론하기
__4.5.7 파인 튜닝 모델 설명 업데이트하기
__4.5.8 파인 튜닝 모델 삭제하기
__4.5.9 인증 정보 파일
4.6 버텍스 AI 제미나이 API
__4.6.1 버텍스 AI 제미나이 API의 개요
__4.6.2 버텍스 AI 제미나이 API 요금
__4.6.3 서비스 계정 키 준비하기
__4.6.4 버텍스 AI 제미나이 API 준비하기
__4.6.5 텍스트 생성하기
__4.6.6 이미지 질의응답

5장 제미나이 API(안드로이드 편)
5.1 텍스트 생성
__5.1.1 텍스트 생성의 개요
__5.1.2 구글 AI 제미나이 API의 개요
__5.1.3 제미나이 API 요금
__5.1.4 API 키 가져오기
__5.1.5 제미나이 API 준비하기
__5.1.6 텍스트 생성하기
__5.1.7 스트리밍
__5.1.8 챗
__5.1.9 생성 파라미터
__5.1.10 안전 설정
5.2 멀티모달
__5.2.1 멀티모달 개요
__5.2.2 제미나이 API 준비하기
__5.2.3 이미지 질의응답
5.3 로컬 LLM
__5.3.1 로컬 LLM의 개요
__5.3.2 제미나이 나노와 젬마
__5.3.3 안드로이드의 로컬 언어 모델 실행 환경
__5.3.4 Llama.cpp 데모 애플리케이션 실행하기

6장 제미나이 API(iOS 편)
6.1 텍스트 생성
__6.1.1 텍스트 생성의 개요
__6.1.2 구글 AI 제미나이 API의 개요
__6.1.3 제미나이 API 요금
__6.1.4 API 키 가져오기
__6.1.5 제미나이 API 준비하기
__6.1.6 텍스트 생성하기
__6.1.7 스트리밍
__6.1.8 챗
__6.1.9 생성 파라미터
__6.1.10 안전 설정
6.2 멀티모달
__6.2.1 멀티모달 개요
__6.2.2 제미나이 API 준비하기
__6.2.3 이미지 질의응답
6.3 로컬 LLM
__6.3.1 로컬 LLM의 개요
__6.3.2 iOS의 로컬 LLM 실행 환경
__6.3.3 Llama.cpp 데모 애플리케이션 실행하기
__6.3.4 MLX Swift 데모 애플리케이션 실행하기

7장 라마인덱스
7.1 라마인덱스 시작
__7.1.1 라마인덱스란
__7.1.2 라마인덱스 핵심 단계
__7.1.3 문서 준비하기
__7.1.4 라마인덱스 준비하기
__7.1.5 라마인덱스를 활용한 질의응답
__7.1.6 인덱스 저장과 불러오기
7.2 라마인덱스 커스터마이징
__7.2.1 라마인덱스 커스터마이징의 개요
__7.2.2 라마인덱스 준비하기
__7.2.3 문서 준비하기
__7.2.4 LLM 커스터마이징하기
__7.2.5 임베딩 모델 커스터마이징하기
__7.2.6 토크나이저 커스터마이징하기
__7.2.7 텍스트 분리기 커스터마이징하기
__7.2.8 쿼리 엔진 커스터마이징하기
__7.2.9 리랭커
7.3 데이터로더
__7.3.1 데이터로더 개요
__7.3.2 웹 페이지를 활용한 질의응답
__7.3.3 유튜브 동영상을 활용한 질의응답
7.4 벡터 스토어
__7.4.1 벡터 스토어의 개요
__7.4.2 라마인덱스 준비하기
__7.4.3 문서 준비하기
__7.4.4 파이스 사용 순서
__7.4.5 파인콘 개요와 API 가져오기
__7.4.6 파인콘 사용 순서
7.5 평가
__7.5.1 라마인덱스 평가하기
__7.5.2 라마인덱스 준비하기
__7.5.3 문서 준비하기
__7.5.4 질문 컨텍스트 데이터셋 생성하기
__7.5.5 Retrieval Evaluation
__7.5.6 응답 성능 평가하기

8장 랭체인
8.1 랭체인 시작
__8.1.1 랭체인 개요
__8.1.2 랭체인 활용 사례
__8.1.3 랭체인의 패키지 구성하기
__8.1.4 랭체인의 모듈 소개하기
__8.1.5 랭체인 준비하기
__8.1.6 LLM
__8.1.7 프롬프트 템플릿
__8.1.8 출력 파서
__8.1.9 체인
__8.1.10 에이전트
__8.1.11 랭스미스
8.2 LLM
__8.2.1 LLM 개요
__8.2.2 랭체인 준비하기
__8.2.3 LLM 사용법
__8.2.4 ChatModel 사용법
__8.2.5 스트리밍
__8.2.6 버텍스 AI 제미나이 API의 LLM 사용법
8.3 프롬프트 템플릿
__8.3.1 프롬프트 템플릿 모듈의 개요
__8.3.2 랭체인 준비하기
__8.3.3 문자열 프롬프트 템플릿의 사용법
__8.3.4 챗 프롬프트 템플릿의 사용법
__8.3.5 메시지플레이스홀더의 사용법
8.4 출력 파서
__8.4.1 출력 파서의 개요
__8.4.2 랭체인 준비하기
__8.4.3 문자열 출력 파서의 사용법
__8.4.4 단순 JSON 출력 파서의 사용법
__8.4.5 파이단틱 출력 파서의 사용법
8.5 체인
__8.5.1 체인 개요
__8.5.2 LCEL 개요
__8.5.3 러너블 개요
__8.5.4 랭체인 준비하기
__8.5.5 체인 사용법
__8.5.6 러너블 사용법
__8.5.7 러너블의 입출력 스키마 확인하기
8.6 챗봇
__8.6.1 챗봇 개요
__8.6.2 랭체인 준비하기
__8.6.3 LLM 준비하기
__8.6.4 챗봇 준비하기
__8.6.5 커스텀 지시
__8.6.6 대화 이력 관리하기
__8.6.7 랭스미스 확인하기
8.7 검색 증강 생성
__8.7.1 검색 증강 생성의 개요
__8.7.2 랭체인 준비하기
__8.7.3 임베딩 모델 준비하기
__8.7.4 벡터 스토어 준비하기
__8.7.5 리트리버 준비하기
__8.7.6 검색 증강 생성 구현하기
__8.7.7 검색 증강 생성으로 문서 처리하기
__8.7.8 랭스미스 확인하기
8.8 에이전트
__8.8.1 에이전트 개요
__8.8.2 랭체인 준비하기
__8.8.3 임베딩 모델 준비하기
__8.8.4 도구 준비하기
__8.8.5 에이전트 구현하기
__8.8.6 메시지 스트리밍
__8.8.7 대화 이력을 포함한 에이전트 구현하기
__8.8.8 랭스미스 확인하기

도서소개

 

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.