장바구니 담기 close

장바구니에 상품을 담았습니다.

파이썬 시계열 예측 분석

파이썬 시계열 예측 분석

  • 마르쿠 페이셰이루
  • |
  • 제이펍
  • |
  • 2024-07-15 출간
  • |
  • 508페이지
  • |
  • 188 X 245 X 25mm
  • |
  • ISBN 9791193926314
판매가

38,000원

즉시할인가

34,200

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
34,200

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

R에서 파이썬으로 전환하는 시계열 데이터 과학

전통적인 통계 분석에서 R은 훌륭한 언어지만, 만능에 가까운 파이썬으로 대체할 수 있다면 통계 분석은 물론 딥러닝 모델과 자동화된 예측 라이브러리까지 다양한 활용이 가능해진다. 마르쿠 페이셰이루는 시계열 예측을 공부하며 R로 되어 있는 많은 코드를 파이썬으로 변환하며 학습하였고, 파이썬 기반 시계열 예측에 대한 종합적인 참고 자료로 만들고자 이 책을 썼다.
이 책은 파이썬을 이용하여 이동평균, 자기회귀, SARIMAX 등 통계적 모델을 기반으로 한 예측 분석부터, LSTM, CNN 아키텍처 등 딥러닝 기반 예측, Prophet, SARIMAX 모델을 이용한 자동화된 예측 라이브러리까지 다루고 있다. 특히 주제별로 적절한 예시를 통해 데이터 수집부터 모델을 구축하고 예측값을 찾는 과정을 차근차근 보여준다. 독자는 실습을 따라 하며 예측값과 실젯값이 점점 가까워지는 경험을 하게 될 것이다.
데이터 과학에서 시간의 변화는 무시할 수 없는 중요한 요소다. 구글 주가 동향, 데이터 센터의 대역폭 사용량 예측, 월간 항공 승객 수 예측, 항당뇨제 처방량 예측, 가정의 전력 소비량 예측 등 다양한 실무 예제를 통해 시계열 예측 분석 기법을 차근차근 배워보자. 이 책을 마치고 나면 당장 실무에서 사용할 수 있는 다양한 시계열 데이터 과학 기술을 익힐 수 있을 것이다.

주요 내용
● 시계열 데이터의 개념과 기본 모델 개발
● 이동평균, 자기회귀, SARIMAX 등 통계적 모델 기반 예측
● LSTM, CNN 아키텍처 등 딥러닝 기반 예측
● Prophet, SARIMAX 모델을 이용한 자동화된 예측 라이브러리

목차

옮긴이 머리말 xiii
베타리더 후기 xiv
머리말 xvi
감사의 말 xviii
이 책에 대하여 xix
표지에 대하여 xxiii

PART I 시간은 그 누구도 기다려주지 않는다
CHAPTER 1 시계열 예측의 이해 3
1.1 시계열 소개 4
__1.1.1 시계열의 구성요소 5
1.2 시계열 예측에 대한 조감도 8
__1.2.1 목적 설정하기 10 / 1.2.2 목적을 달성하기 위해 무엇을 예측해야 하는지 결정하기 10 / 1.2.3 예측할 기간 설정하기 10 / 1.2.4 데이터 수집하기 10 / 1.2.5 예측 모델 개발하기 11 / 1.2.6 상용 환경에 배포하기 12 / 1.2.7 모니터링하기 12 / 1.2.8 새로운 데이터 수집하기 12
1.3 시계열 예측이 다른 회귀 작업들과 다른 점 13
__1.3.1 시계열에는 순서가 있다 13 / 1.3.2 시계열에 특징이 없는 경우가 있다 14
1.4 다음 단계 14
요약 15

CHAPTER 2 단순하게 미래 예측하기 16
2.1 베이스라인 모델 정의하기 18
2.2 과거 평균으로 예측하기 19
__2.2.1 베이스라인 구현을 위한 설정 20 / 2.2.2 과거 평균 기반 베이스라인 모델 구현하기 22
2.3 작년의 평균으로 예측하기 27
2.4 마지막으로 측정된 값으로 예측하기 29
2.5 단순한 계절적 예측 구현하기 31
2.6 다음 단계 32
요약 33

CHAPTER 3 확률보행 따라가보기 35
3.1 확률보행 프로세스 37
__3.1.1 확률보행 프로세스 시뮬레이션하기 37
3.2 확률보행 식별하기 40
__3.2.1 정상성 42 / 3.2.2 정상성 테스트하기 44 / 3.2.3 자기상관함수 48 / 3.2.4 모든 것을 종합하기 48 / 3.2.5 GOOGL은 확률보행인가? 52
3.3 확률보행 예측하기 55
__3.3.1 긴 기간 예측하기 55 / 3.3.2 다음 시간 단계 예측하기 61
3.4 다음 단계 64
3.5 연습 65
__3.5.1 확률보행 시뮬레이션하기와 예측하기 65 / 3.5.2 GOOGL의 일일 종가 예측하기 66 / 3.5.3 직접 선택한 종목의 일일 종가 예측하기 66
요약 67

PART 2 통계적 모델을 사용하여 예측하기
CHAPTER 4 이동평균과정 모델링하기 71
4.1 이동평균과정 정의하기 73
__4.1.1 이동평균과정의 차수 식별하기 75
4.2 이동평균과정 예측하기 80
4.3 다음 단계 90
4.4 연습 91
__4.4.1 MA(2) 프로세스 시뮬레이션하고 예측 수행하기 92 / 4.4.2 MA(q) 프로세스 시뮬레이션하고 예측 수행하기 92
요약 93

CHAPTER 5 자기회귀과정 모델링하기 94
5.1 소매점의 주간 평균 유동인구 예측하기 95
5.2 자기회귀과정 정의하기 97
5.3 정상적 자기회귀과정의 차수 찾기 98
__5.3.1 편자기상관함수 104
5.4 자기회귀과정 예측하기 107
5.5 다음 단계 114
5.6 연습 114
__5.6.1 AR(2) 프로세스 시뮬레이션하고 예측 수행하기 114 / 5.6.2 AR(p) 프로세스 시뮬레이션하고 예측 수행하기 115
요약 115

CHAPTER 6 복잡한 시계열 모델링하기 116
6.1 데이터 센터의 대역폭 사용량 예측하기 117
6.2 자기회귀이동평균과정 살펴보기 120
6.3 정상적 ARMA 프로세스 식별하기 122
6.4 일반적 모델링 절차 고안하기 128
__6.4.1 아카이케 정보 기준 이해하기 130 / 6.4.2 AIC를 사용하여 모델 선택하기 132 / 6.4.3 잔차 분석 이해하기 134 / 6.4.4 잔차 분석 수행하기 139
6.5 일반적 모델링 절차 적용하기 143
6.6 대역폭 사용량 예측하기 152
6.7 다음 단계 157
6.8 연습 157
__6.8.1 시뮬레이션된 ARMA(1,1) 프로세스에 대한 예측 수행하기 158 / 6.8.2 ARMA(2,2) 프로세스 시뮬레이션하고 예측 수행하기 158
요약 159

CHAPTER 7 비정상적 시계열 예측하기 161
7.1 자기회귀누적이동평균 모델 정의하기 164
7.2 비정상적 시계열에 적용하기 위해 일반적 모델링 절차 수정하기 165
7.3 비정상적 시계열 예측하기 167
7.4 다음 단계 177
7.5 연습 177
__7.5.1 4장, 5장, 6장의 데이터 집합에 ARIMA(p,d,q) 모델 적용하기 177
요약 178

CHAPTER 8 계절성 고려하기 179
8.1 SARIMA(p,d,q)(P,D,Q)m 모델 살펴보기 180
8.2 시계열에서 계절별 패턴 식별하기 183
8.3 월간 항공 승객 수 예측하기 187
__8.3.1 ARIMA(p,d,q) 모델을 사용하여 예측하기 190 / 8.3.2 SARIMA(p,d,q)(P,D,Q)m 모델을 사용하여 예측하기 196 / 8.3.3 각 예측 방법의 성능 비교하기 200
8.4 다음 단계 203
8.5 연습 203
__8.5.1 존슨앤드존슨 데이터 집합에 SARIMA(p,d,q)(P,D,Q)m 모델 적용하기 203
요약 204

CHAPTER 9 모델에 외생 변수 추가하기 205
9.1 SARIMAX 모델 살펴보기 207
__9.1.1 미국 거시경제 데이터 집합의 외생 변수 탐색하기 208 / 9.1.2 SARIMAX 사용 시 유의사항 211
9.2 SARIMAX 모델을 사용하여 실질 GDP 예측하기 212
9.3 다음 단계 221
9.4 연습 222
__9.4.1 SARIMAX 모델에 모든 외생 변수를 사용하여 실질 GDP 예측하기 222
요약 222

CHAPTER 10 다중 시계열 예측하기 223
10.1 VAR 모델 살펴보기 225
10.2 VAR(p) 모델에 대한 모델링 절차 설계하기 227
__10.2.1 그레인저 인과관계 테스트 살펴보기 229
10.3 실질 가처분 소득과 실질 소비 예측하기 230
10.4 다음 단계 242
10.5 연습 243
__10.5.1 VARMA 모델을 사용하여 realdpi와 realcons 예측하기 243 /10.5.2 VARMAX 모델을 사용하여 realdpi와 realcons 예측하기 244
요약 244

CHAPTER 11 캡스톤 프로젝트: 호주의 항당뇨제 처방 건수 예측하기 245
11.1 필요한 라이브러리 임포트하고 데이터 로딩하기 247
11.2 수열과 그 구성요소 시각화하기 248
11.3 데이터로 모델링하기 250
__11.3.1 모델 선택 수행하기 253 / 11.3.2 잔차 분석 수행하기 254
11.4 예측을 수행하고, 모델 성능 평가하기 256
11.5 다음 단계 260

PART 3 딥러닝을 활용하여 대규모 예측하기
CHAPTER 12 시계열 예측을 위한 딥러닝 소개하기 263
12.1 시계열 예측에 딥러닝을 사용해야 하는 경우 264
12.2 다양한 유형의 딥러닝 모델 살펴보기 265
12.3 예측을 위한 딥러닝 적용 준비하기 268
__12.3.1 데이터 탐색 수행하기 268 / 12.3.2 특징 엔지니어링과 데이터 분할 272
12.4 다음 단계 277
12.5 연습 277
요약 278

CHAPTER 13 딥러닝을 위해 데이터 윈도잉하고 베이스라인 모델 만들기 279
13.1 데이터 윈도우 만들기 280
__13.1.1 시계열 예측을 위한 딥러닝 모델을 훈련하는 방법 살펴보기 280
__13.1.2 DataWindow 클래스 구현하기 284
13.2 베이스라인 모델 적용하기 292
__13.2.1 단일 단계 베이스라인 모델 292
__13.2.2 다중 단계 베이스라인 모델 295
__13.2.3 다중 출력 베이스라인 모델 299
13.3 다음 단계 303
13.4 연습 303
요약 304

CHAPTER 14 딥러닝 첫걸음 305
14.1 선형 모델 구현하기 306
__14.1.1 단일 단계 선형 모델 구현하기 307 / 14.1.2 다중 단계 선형 모델 구현하기 309 / 14.1.3 다중 출력 선형 모델 구현하기 311
14.2 심층 신경망 구현하기 312
__14.2.1 단일 단계 모델로 심층 신경망 구현하기 314 / 14.2.2 다중 단계 모델로 심층 신경망 구현하기 317 / 14.2.3 다중 출력 모델로서 심층 신경망 구현하기 319
14.3 다음 단계 320
14.4 연습 321
요약 322

CHAPTER 15 LSTM으로 과거 기억하기 323
15.1 순환 신경망 살펴보기 324
15.2 LSTM 아키텍처 살펴보기 326
__15.2.1 망각 게이트 327 / 15.2.2 입력 게이트 329 / 15.2.3 출력 게이트 330
15.3 LSTM 아키텍처 구현하기 332
__15.3.1 단일 단계 모델로서 LSTM 구현하기 332 / 15.3.2 다중 단계 모델로서 LSTM 구현하기 335 / 15.3.3 다중 출력 모델로서 LSTM 구현하기 338
15.4 다음 단계 341
15.5 연습 342
요약 343

CHAPTER 16 CNN으로 시계열 필터링하기 344
16.1 CNN 살펴보기 345
16.2 CNN 구현하기 349
__16.2.1 CNN을 단일 단계 모델로서 구현하기 350 / 16.2.2 CNN을 다중 단계 모델로서 구현하기 354 / 16.2.3 CNN을 다중 출력 모델로서 구현하기 356
16.3 다음 단계 359
16.4 연습 359
요약 361

CHAPTER 17 예측으로 더 많은 예측하기 362
17.1 ARLSTM 아키텍처 살펴보기 363
17.2 자기회귀 LSTM 모델 구축하기 364
17.3 다음 단계 370
17.4 연습 371
요약 371

CHAPTER 18 캡스톤 프로젝트: 가정의 전력 소비량 예측하기 372
18.1 캡스톤 프로젝트 이해하기 373
__18.1.1 캡스톤 프로젝트의 목표 375
18.2 데이터 랭글링 및 전처리하기 376
__18.2.1 누락된 데이터 처리하기 377 / 18.2.2 데이터 변환 379 / 18.2.3 데이터 리샘플링하기 379
18.3 특징 엔지니어링 382
__18.3.1 불필요한 열 제거하기 383 / 18.3.2 계절적 기간 식별하기 383 / 18.3.3 데이터를 분할하고 규모 조정하기 386
18.4 딥러닝으로 모델링할 준비하기 387
__18.4.1 초기 설정 387 / 18.4.2 DataWindow 클래스 정의하기 389 / 18.4.3 모델 훈련을 위한 유틸리티 함수 391
18.5 딥러닝으로 모델링하기 392
__18.5.1 베이스라인 모델 392 / 18.5.2 선형 모델 396 / 18.5.3 심층 신경망 397 / 18.5.4 장단기 메모리 모델 398 / 18.5.5 합성곱 신경망 399 / 18.5.6 CNN과 LSTM 결합하기 401 / 18.5.7 자기회귀 LSTM 모델 402 / 18.5.8 최적의 모델 선택하기 404
18.6 다음 단계 406

PART 4 대규모 예측 자동화하기
CHAPTER 19 Prophet으로 시계열 예측 자동화하기 409
19.1 자동화된 예측 라이브러리들에 대한 개관 410
19.2 Prophet 살펴보기 412
19.3 Prophet을 사용하여 기본적 예측해보기 414
19.4 Prophet의 고급 기능 살펴보기 420
__19.4.1 시각화 기능 421 / 19.4.2 교차 검증과 성능 지표 425 / 19.4.3 하이퍼파라미터 튜닝 429
19.5 Prophet으로 견고한 예측 절차 구현하기 432
__19.5.1 예측 프로젝트: 구글에서 ‘chocolate’ 검색의 인기도 예측하기 434 / 19.5.2 실험: SARIMA가 더 나을 수도 있을까? 442
19.6 다음 단계 446
19.7 연습 447
__19.7.1 항공 승객 수 예측하기 447 / 19.7.2 항당뇨제 처방 건수 예측하기 447 / 19.7.3 구글 트렌드에서 키워드의 인기도 예측하기 447
요약 448

CHAPTER 20 캡스톤 프로젝트: 캐나다의 스테이크 월평균 소매 가격 예측하기 449
20.1 캡스톤 프로젝트의 이해 450
__20.1.1 캡스톤 프로젝트의 목표 450
20.2 데이터 전처리와 시각화 451
20.3 Prophet을 사용한 모델링 453
20.4 선택사항: SARIMA 모델 개발하기 459
20.5 다음 단계 464

CHAPTER 21 한 단계 더 나아가기 466
21.1 배운 내용 요약하기 467
__21.1.1 예측을 위한 통계적 방법 467 / 21.1.2 예측을 위한 딥러닝 방법 468 / 21.1.3 예측 절차 자동화 469
21.2 예측이 실패하면 무엇을 해야 할까? 470
21.3 시계열 데이터의 다른 응용 분야 472
21.4 계속 연습하기 473

APPENDIX A 설치 지침 475

찾아보기 479

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.