장바구니 담기 close

장바구니에 상품을 담았습니다.

네트워크 엔지니어를 위한 차세대 인터넷 프로토콜 IPv6 기본 원리

네트워크 엔지니어를 위한 차세대 인터넷 프로토콜 IPv6 기본 원리

  • 릭 그라지아니
  • |
  • 북랩
  • |
  • 2023-07-20 출간
  • |
  • 642페이지
  • |
  • 188 X 257 X 33mm / 500g
  • |
  • ISBN 9791168369467
판매가

45,000원

즉시할인가

40,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
40,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

목차

Introduction

Part I Introduction to IPv6
Chapter 1 Introduction to IPv6
IPv6 Is Here
Why Transition to IPv6?
IPv4 Address Depletion
Access to IPv6-Only Customers
Better Performance
Securing Your Current Network
IPv4
IPv4 Address Depletion
CIDR
NAT with Private Addresses
Problems with NAT
NAT is Not Security
NAT Example
What About IPv5?
The Fascinating History of IPv6
Some Background
IPv4 Address Exhaustion and the Need for More International Involvement
A Call for Proposals
A More IP Version of IPv6
IPv6: More Than Just Longer Addresses
IPv6 Myths
Transitioning to IPv6
Summary
Review Questions
References
RFCs
Websites

Chapter 2 IPv6 Primer
Hexadecimal Number System
IPv6 Address Types
Global Unicast Address (GUA)
Link-Local Unicast Address
Unspecified Address
Solicited-Node Multicast Address
Address Terminology
ICMPv6 Neighbor Discovery Protocol (NDP)
Neighbor Solicitation (NS) and Neighbor Advertisement (NA) Messages
Router Solicitation (RS) and Router Advertisement (RA) Messages
Dynamic Address Allocation
Summary
Review Questions
References
RFCs

Chapter 3 Comparing IPv4 and IPv6
Comparing the IPv4 and IPv6 Headers
The IPv4 and IPv6 Version Fields
IPv4 Internet Header Length (IHL) Field
IPv4 Type of Service (ToS) and IPv6 Traffic Class Fields
IPv6 Flow Label Field
IPv4 Total Length Field, IPv6 Payload Length Field, and IPv6 Jumbograms
IPv4 and IPv6 MTUs
IPv4 Fragmentation
IPv6 Fragmentation: IPv6 Source Only
IPv4 Protocol and IPv6 Next Header Fields
IPv4 Time to Live (TTL) and IPv6 Hop Limit Fields
Checksums: IPv4, TCP, and UDP
IPv4 and IPv6 Source Address and Destination Address Fields
IPv4 Options and Padding Fields, IPv6 Fixed Length
IPv6 over Ethernet
Packet Analysis Using Wireshark
Extension Headers
Hop-by-Hop Options Extension Header
Routing Extension Header
Fragment Extension Header
IPsec: AH and ESP Extension Headers
Transport and Tunnel Modes
Encapsulating Security Payload (ESP) Extension Header
Authentication Header (AH) Extension Header
Destination Options Extension Header
No Next Header
Comparing IPv4 and IPv6 at a Glance
Summary
Review Questions
References
RFCs
Websites
Part II IPv6 Addresses

Chapter 4 IPv6 Address Representation and Address Types
Representation of IPv6 Addresses
Rule 1: Omit Leading 0s
Rule 2: Omit All-0s Hextets
Combining Rule 1 and Rule
Prefix Length Notation
IPv6 Address Types
IPv6 Address Space
Unicast Addresses
Global Unicast Address
Link-Local Unicast Address
Loopback Addresses
Unspecified Addresses
Unique Local Addresses
ULA and NAT
L Flag and Global ID
Site-Local Addresses (Deprecated)
IPv4 Embedded Address
IPv4-Mapped IPv6 Addresses
IPv4-Compatible IPv6 Addresses (Deprecated)
Multicast Addresses
Well-Known Multicast Addresses
Solicited-Node Multicast Addresses
Anycast 주소
Summary
Review Questions
References
RFCs
Websites
Book

Chapter 5 Global Unicast Address
Structure of a Global Unicast Address
Global Routing Prefix
Subnet ID
Interface ID
Manual Configuration of a Global Unicast Address
Manual GUA Configuration for Cisco IOS
Manual GUA Configuration with EUI-64 for Cisco IOS
Manual GUA Configuration with IPv6 Unnumbered for Cisco IOS
Manual GUA Configuration for Windows, Linux, and Mac OS
Implementing Static Routing and Verifying Connectivity with Ping
Recognizing the Parts of a GUA Address and the 3–1–4 Rule
Examining Other Prefix Lengths
Subnetting IPv6
Extending the Subnet Prefix
Subnetting on a Nibble Boundary
Subnetting Within a Nibble
Subnetting /127 Point-to-Point Links
NDP Exhaustion Attack
/127 Subnetting on Point-to-Point Links
ipv6gen: An IPv6 Subnetting Tool
Prefix Allocation
Provider-Aggregatable (PA) and Provider-Independent (PI) Address Space
Provider-Aggregatable Address Space
Provider-Independent Address Space
General Prefix Option
Dynamic Addressing Methods with SLAAC and DHCPv6
Summary
Review Questions
References
RFCs
Websites

Chapter 6 Link-Local Unicast Address
Structure of a Link-Local Unicast Address
Automatic Configuration of a Link-Local Address
EUI-64 Generated Interface ID
Verifying the Router’s Link-Local Address on Ethernet and Serial Interfaces
Randomly Generated Interface ID
Zone ID (%) on Link-Local Interfaces
Manual Configuration of a Link-Local Address
Link-Local Address and Duplicate Address Detection
Link-Local Addresses and Default Gateways
ipv6 enable: Isolated Link-Local Address
Pinging a Link-Local Address
Summary
Review Questions
References
RFCs

Chapter 7 Multicast Addresses
Scope
Multicast with Link-Local Scope Versus Link-Local Unicast Addresses
Well-Known Multicast Addresses
Solicited-Node Multicast Addresses
Mapping Unicast Address to Solicited-Node Multicast Address
Mapping to the Ethernet MAC Address
Mapping Solicited-Node Multicast to Ethernet MAC Addresses
Mapping Well-Known Multicast to Ethernet MAC Addresses
Verifying the Address Mappings on Cisco IOS, Windows, and Linux
Multiple Devices Using the Same Solicited-Node Multicast Address
One Solicited-Node Multicast Address for Multiple Unicast Addresses
Multicast Listener Discovery
MLD Snooping
Summary
Review Questions
References
RFCs
Websites, Videos, and Books

Part III Dynamic IPv6 Addressing

Chapter 8 Basics of Dynamic Addressing in IPv6
Dynamic IPv4 Address Allocation: DHCPv4
Dynamic IPv6 Address Allocation
ICMPv6 Router Solicitation and Router Advertisement Messages
Router Advertisement Methods and the A, O, and M Flags
Method 1: Stateless Address Autoconfiguration (SLAAC)
Method 2: SLAAC with Stateless DHCPv6
Method 3: Stateful DHCPv6
DHCPv6 Services
DHCPv6 Terminology and Message Types
DHCPv6 Communications
Summary
Review Questions
References
RFCs
Website

Chapter 9 Stateless Address Autoconfiguration (SLAAC)
The RA Message and SLAAC
On-Link Determination
Generating an Interface ID
Generating the Interface ID Using the EUI-64 Process
Configuring a Windows Host to Use EUI-64
Privacy Extension for Stateless Address Autoconfiguration
Privacy Extension and Generating Randomized Interface IDs
Privacy Extension and Temporary Addresses
Disabling the Use of Temporary Addresses
Autoconfigured Address States and Lifetimes
Example: Autoconfigured Address States and Lifetimes
Displaying IPv6 Lifetimes and State Information on Windows, Linux, and Mac OS
Router Advertisement Fields and Options
Examining the Router Advertisement with Wireshark
Modifying the Valid Lifetime and Preferred Lifetime in the RA Message
Including the DNS Address in the Router Advertisement
Router Advertisement Configuration Options
Default Address Selection
Configuring the Router’s Interface as a SLAAC Client
Summary
Review Questions
References
RFCs
Websites
Other

Chapter 10 Stateless DHCPv6
SLAAC with Stateless DHCPv6
Implementing Stateless DHCPv6
Configuring the RA Message’s Other Configuration Flag
Wireshark Analysis of Router Advertisement: SLAAC and Stateless DHCPv6
Configuring a Router as a Stateless DHCPv6 Server
Verifying Stateless DHCPv6 on a Windows Client
Verifying the Router as a Stateless DHCPv6 Server
DHCPv6 Options
rapid-commit Option
Configuring the Rapid-Commit Option
Relay Agent Communications
DHCPv6 Relay Agent Configuration Commands
Configuring a Unicast DHCPv6 Relay Agent
Configuring a DHCPv6 Relay Agent Using a Multicast Address
Summary
Review Questions
References
RFCs
Websites

Chapter 11 Stateful DHCPv6
Stateful DHCPv6 Messages and Process
Implementing Stateful DHCPv6
Configuring the RA Message M Flag and A Flag
Setting the M Flag to 1 with an A Flag Set to 1
Consequences of Disabling the RA Message or Omitting the Prefix
Setting the M Flag to 1 and Modifying the A Flag to 0
Wireshark Analysis of Router Advertisement: Stateful DHCPv6
Configuring a Router as a Stateful DHCPv6 Server
The Address Prefix Command
Verifying Stateful DHCPv6 on a Windows Client
Verifying the Router as a Stateful DHCPv6 Server
DHCPv6 Options
IPv6 Prefix Delegation Options for DHCPv6
Sample Configuration: Prefix Delegation with DHCPv6
DHCPv6-PD Process
HOME Router (Requesting Router) Configuration and Verification
ISP Router (Delegating Router) Configuration and Verification
Verifying Prefix Delegation with DHCPv6 on WinPC
Summary
Review Questions
References
RFCs
Websites

Part IV ICMPv6 and ICMPv6 Neighbor Discovery
Chapter 12 ICMPv6
General Message Format
ICMP Error Messages
Destination Unreachable
Packet Too Big
Path MTU Discovery
Time Exceeded
Parameter Problem
ICMP Informational Messages
Echo Request and Echo Reply
Pinging a Global Unicast Address
Pinging a Link-Local Address
Summary
Review Questions
References
RFCs

Chapter 13 ICMPv6 Neighbor Discovery
Neighbor Discovery Options
Default Router and Prefix Determination
Router Solicitation Message
Router Advertisement Message
Address Resolution
The Address Resolution Process
Characteristics of the Neighbor Solicitation Message
Format of the Neighbor Solicitation Message
Format of the Neighbor Advertisement Message
Neighbor Cache
Destination Cache
Duplicate Address Detection (DAD)
Neighbor Unreachability Detection (NUD)
Redirect Message
Summary
Review Questions
References
RFCs

Part V Routing IPv6
Chapter 14 IPv6 Routing Table and Static Routes
Configuring a Router as an IPv6 Router
Understanding the IPv6 Routing Table
Codes: NDp and ND
Code: Connected
Code: Local
Configuring IPv6 Static Routes
Static Routes with a GUA Next-Hop Address
Static Routes with a Link-Local Next-Hop Address
Static Routes with Only an Exit Interface
Default Static Routes with Link-Local Next-Hop Addresses
Verifying IPv6 Static Routes
Summarizing IPv6 Routes
IPv6 Summary Static Route
CEF for IPv6
Summary
Review Questions
References
RFCs
Websites
Books

Chapter 15 EIGRP for IPv6
Comparing EIGRPv4 and EIGRPv6
Classic EIGRP for IPv6
Configuring Classic EIGRP for IPv6
Verifying Classic EIGRP for IPv6
EIGRP Named Mode for IPv6
Configuring EIGRP Named Mode for IPv6
Verifying EIGRP Named Mode for IPv6
Comparing EIGRP Named Mode for IPv4 and IPv6
Summary
Review Questions
References
RFC
Websites
Books

Chapter 16 OSPFv3
Comparing OSPFv2 and OSPFv3
Traditional OSPFv3
Configuring Traditional OSPFv3
ASBR and Advertising a Default Route
Area Border Router with Totally Stubby Area
Internal Router: Totally Stubby Area
Advertising a Default Route
Verifying Traditional OSPFv3
OSPFv3 with Address Families
Configuring OSPFv3 with AF
ASBR and Advertising a Default Route
ABR with Totally Stubby Area
Internal Router: Totally Stubby Area
Verifying OSPFv3 with AF
Configuring OSPFv3 for an IPv4 Island
Summary
Review Questions
References
RFCs
Websites
Books

Part VI Implementing IPv6
Chapter 17 Deploying IPv6 in the Network
IPv6 Address Plan Considerations
Encoding Information in the Subnet ID
VLAN-Mapped Subnet ID
IPv6 Address Plans
IPv6 VLANs
IPv6 First Hop Redundancy Protocols
ICMPv6 Neighbor Discovery
HSRP and VRRP
GLBP
Selecting an FHRP
Dual Stack
IPv6 Address Format in URL Syntax
DNS
DNS Query and Response
Happy Eyeballs
IPv6 Access Control Lists
Configuring IPv6 ACLs
Transition Technologies
Translation with NAT64
Traffic Initiated from IPv6-Only Clients to IPv4-Only Servers
Traffic Initiated from IPv4-Only Clients to IPv6-Only Servers
Other Translation Techniques
Tunneling IPv6
Conclusion
Summary
Review Questions
References
RFCs
Websites

Appendixes
Appendix A Configuring NAT64 and IPv6 Tunnels
Configuring NAT64
Configuring IPv6 Tunnels
Manual Tunnels
6to4 Tunnels
6to4 Tunnels and Loopback Interfaces
ISATAP

Appendix B IPv6 Command Quick Reference
Cisco IOS Commands
Addressing Commands
Global Unicast Address and Unique Local Unicast Addresses
Link-Local Unicast Address
General Prefix
DNS host commands
Verifying Address Information
ICMPv6 Router Advertisement Commands
Enabling ICMPv6 Router Advertisements
인터페이스상에서 Router Advertisement 파라미터를 수정한다
Verifying Router Advertisements
Configuring a DHCPv6 Server
Stateless DHCPv6 Configuration Pool Commands
Stateful DHCPv6 Configuration Pool Commands
Associating the DHCPv6 Pool to an Interface
DHCPv6 Relay
Verifying DHCPv6 Information
IPv6 Access Control Lists
Configuring IPv6 ACLs
Verifying IPv6 ACLs
Static Routes, Displaying the Routing Table, and CEF for IPv6
Static Routes
Verifying Static Routes
CEF for IPv6
EIGRP for IPv6
Classic EIGRP for IPv6
EIGRP Named Mode
EIGRP for IPv6 Verification Commands
OSPFv3
Configuring Traditional OSPFv3
Verifying Traditional OSPFv3
Configuring OSPFv3 with Address Families
Verifying OSPFv3 with Address Families
Host Operating System Commands
Windows OS 5
General Commands
Interface Addresses Information
SLAAC Interface ID
Linux OS
General Commands
Address Configuration Commands
Mac OS X
General Commands
Address Configuration Commands

Appendix C Answers to Review Questions

Index

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.