★ 이 책에서 다루는 내용 ★
◎ 토큰화, 어간 추출, 표제어 추출, 불용어 처리, 품사 태깅과 같은 텍스트 전처리 기법
◎ 단어 빈도 그래프, 워드 클라우드 그리기
◎ 카운트 벡터, TF-IDF 벡터로 문서를 변환하고, 문서 간 유사도 구하기
◎ 다양한 머신러닝/딥러닝 기법으로 문서 분류와 감성 분석 수행
◎ KoNLPy를 이용해 한국어 문서를 변환하고 다양한 머신러닝 알고리즘으로 분석
◎ 문서 벡터의 차원 축소, LDA 토픽모델링, 동적 토픽 모델링, 토픽 트렌드를 구하고 시각화
◎ Word2Vec, ELMo와 같은 워드 임베딩 기법과 Doc2Vec의 이해
◎ BERT의 이해와 활용, 파이토치를 이용한 미세조정 학습의 실습, 한국어 문서에 대한 BERT 사용법 실습
◎ 사전 학습 언어모델과 GPT-2, GPT-3, chatGPT, RoBERTa, ALBERT, ELECTRA, BART, T5 등 다양한 트랜스포머 변형 모형의 이해
◎ T5, KoBART, DistilBERT, KoELECTRA 등의 트랜스포머 모형을 이용한 문서 요약과 질의 응답 실습