장바구니 담기 close

장바구니에 상품을 담았습니다.

인공지능 소프트웨어 품질 보증을 위한 테스트 기법

인공지능 소프트웨어 품질 보증을 위한 테스트 기법

  • 사토 나오토
  • |
  • 제이펍
  • |
  • 2023-03-02 출간
  • |
  • 268페이지
  • |
  • 188 X 245 X 15mm
  • |
  • ISBN 9791192469812
판매가

26,000원

즉시할인가

23,400

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
23,400

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

AI 소프트웨어 테스트의 기본 개념, 예제, 튜토리얼로 실전까지 정복

챗GPT 같은 AI 소프트웨어가 핫한 시대다. 자율주행, 로봇, 가전제품 등의 분야에서 AI 개발과 활용에 대한 수요가 급증하면서 AI 소프트웨어가 우후죽순 생겨나고 있다. 하지만 내부 결정 과정을 이해하기 어려운 AI는 검증 과정이 무척이나 까다롭기에 새로운 기술적 방법론에만 관심을 갖는 경우가 많다.

그러나 현실적으로 소프트웨어의 품질 보증을 위해서는 테스트가 필수적이다. 그렇다면 AI 소프트웨어는 어떻게 테스트해야 할까? 기존 소프트웨어 테스트 기법은 정답과 비교를 하지만, 정답을 정의할 수 없는 문제를 다루는 AI를 테스트하려면 다른 방법이 필요하다. 이 책의 저자들은 최신 학술 논문을 알기 쉽게 해설하며 실전 예제와 함께 그 해답을 제시한다.

이 책에서는 기존의 소프트웨어 테스트 기법의 한계를 뛰어넘는 메타모픽 테스트, 뉴런 커버리지 테스트, 최대 안전 반경 테스트, 커버리지 검증 기법을 소개한다. 저자들은 어려운 수학을 재치 있는 글과 그림으로 설명한다. 기법을 이해하는 데에서 그치지 않고 실무에 적용할 수 있도록 구성해 대학생부터 실무 담당자까지 두루 읽을 만한 책이다.

목차

지은이 소개 x
옮긴이 소개 xi
옮긴이 머리말 xii
추천의 글 xiii
베타리더 후기 xiv
이 책에 대하여 xvi

CHAPTER 0 AI 소프트웨어와 테스트 1
0.1 AI 소프트웨어 테스트의 필요성 1
__0.1.1 AI의 보급에 따른 과제 1
__0.1.2 AI 기술의 핵심 ‘머신러닝’ 3
0.2 귀찮은 문제 = 과제와 해결 방법에 관련된 모순 4
__0.2.1 머신러닝의 장점에 내포된 문제점 4
__0.2.2 이 책의 주제와 대상 독자 5

CHAPTER 1 AI의 이해 7
1.1 AI의 종류 7
__1.1.1 강한 AI와 약한 AI 7
__1.1.2 규칙 기반 AI와 머신러닝 8
__1.1.3 지도 학습 9
__1.1.4 지도 학습으로 해결할 수 있는 문제들 9
__1.1.5 비지도 학습 10
__1.1.6 강화 학습 10
__1.1.7 휴리스틱스와 메타휴리스틱스 11
1.2 AI 소프트웨어 12
__1.2.1 머신러닝과 AI 소프트웨어 12
__1.2.2 AI 모델 12
__1.2.3 학습과 훈련 및 평가 13
__1.2.4 훈련 결과에 대한 평가와 AI 소프트웨어 테스트 15
__1.2.5 AI 소프트웨어와 AI 시스템의 관계 16
__[칼럼] AI의 진화 발전 사례: 일본식 장기인 쇼기 프로그램 16
1.3 지도 학습의 체계 18
__1.3.1 학습 완료 모델에 기반한 추론 18
__1.3.2 훈련용 입력 데이터와 훈련용 정답 데이터 18
__1.3.3 훈련 완료 모델의 평가 19
__1.3.4 학습 완료 모델의 테스트 20
__[칼럼] 머신러닝의 수학적 해석 21
1.4 AI의 개발 공정 24
__1.4.1 AI 개발 공정의 특징: 시행착오의 반복 24
__1.4.2 AI 컴포넌트 개발 공정 26
__1.5 AI 모델의 구체적인 사례 27
__1.5.1 심층 신경망 27
__1.5.2 앙상블 트리 30
__1.5.3 분류 문제 33
__1.5.4 회귀 문제 37
1.6 요약 39

CHAPTER 2 AI 소프트웨어 테스트 41
2.1 기존의 소프트웨어와 AI 소프트웨어의 차이점 41
__[칼럼] 수학적 귀납법과 과학적 접근법 43
2.2 기존의 소프트웨어 테스트 43
__2.2.1 입장료 계산 문제의 예 44
__2.2.2 동치 클래스와 경곗값을 이용한 테스트 45
__[칼럼] 생일 계산 46
__[칼럼] 동치 클래스와 경곗값의 수학적 표현 47
2.3 기존 테스트 기법의 적용 가능성 48
__2.3.1 동치 클래스 기법의 적용 가능성 48
__2.3.2 머신러닝의 특성 50
2.4 AI 소프트웨어 테스트 기법 52
__2.4.1 메타모픽 테스트 기법의 개요 53
__2.4.2 뉴런 커버리지 테스트 기법의 개요 54
__2.4.3 최대 안전 반경 테스트 기법의 개요 55
__2.4.4 커버리지 검증 기법의 개요 55
__[칼럼] AI의 품질 57

CHAPTER 3 튜토리얼 준비 59
3.1 실행 환경 설정 59
__3.1.1 파이썬 설치 59
__3.1.2 외부 라이브러리 설치 62
__[칼럼] pip를 이용한 외부 라이브러리 설치 63
3.2 테스트 도구 다운로드 65
__3.2.1 참조 파일 다운로드 65
__3.2.2 기타 파일 다운로드 66
3.3 학습에 사용할 데이터셋 68
__3.3.1 MNIST 데이터셋 68
__3.3.2 HouseSales 데이터셋 69
3.4 AI 모델의 학습 69
__3.4.1 MNIST 데이터셋 기반의 DNN 모델의 학습 70
__[칼럼] DNN 모델의 저장 방법 72
__3.4.2 HouseSales 데이터셋 기반의 DNN 모델의 학습 74
__3.4.3 HouseSales 데이터셋 기반의 XGBoost 모델 학습 76
3.5 학습 완료 모델의 실행 확인 77
__3.5.1 숫자 이미지 식별을 위한 DNN 모델의 실행 확인 77
__3.5.2 주택 가격 예측을 위한 DNN 모델 실행 확인 79
__3.5.3 주택 가격 예측을 위한 XGBoost 모델 실행 확인 80

CHAPTER 4 메타모픽 테스트 기법 81
4.1 메타모픽 테스트 기법이란? 81
__4.1.1 테스트 오라클의 문제점 81
__4.1.2 메타모픽 관계 84
__[칼럼] 수식을 이용한 메타모픽 테스트 기법의 정의 85
__4.1.3 AI 소프트웨어에 적용 87
__4.1.4 메타모픽 테스트 기법으로 알 수 있는 사항 89
__[칼럼] 테스트 성공인 경우에 알 수 있는 사실들 91
__4.1.5 기존의 테스트 기법과의 차이점 94
__4.1.6 메타모픽 테스트 기법의 활용 96
__[칼럼] 테스트 성공인 경우에 알 수 있는 사실들(Part 2) 99
4.2 튜토리얼 100
__4.2.1 메타모픽 테스트 기법의 실행 101
__4.2.2 데이터 가공 방법 변경 109
__4.2.3 데이터 가공 횟수의 변경 111
4.3 요약 112

CHAPTER 5 뉴런 커버리지 테스트 기법 113
5.1 기존의 커버리지와 뉴런 커버리지 113
__5.1.1 기존 소프트웨어에 대한 커버리지 113
__[칼럼] 명령 커버리지·분기 커버리지·조건 커버리지 114
__5.1.2 DNN 모델에 커버리지 적용 116
__5.1.3 뉴런의 활성 상태 117
5.2 뉴런 커버리지를 이용한 테스트 122
__5.2.1 뉴런 커버리지를 향상시키는 데이터 122
__5.2.2 테스트용 입력 데이터 작성 방법 122
__[칼럼] 편미분과 기울기 124
__5.2.3 가이드라인을 기반으로 가공 방법 선택 129
__[칼럼] 벡터와 내적 131
__5.2.4 가공 데이터를 사용한 테스트 실행 134
5.3 튜토리얼 135
__5.3.1 뉴런 커버리지 테스트의 실행 135
__5.3.2 활성화를 판정하는 경곗값 변경 139
__5.3.3 뉴런 커버리지 테스트의 반복 실행 143

CHAPTER 6 최대 안전 반경 테스트 기법 145
6.1 최대 안전 반경의 이해 145
__6.1.1 강건성 145
__6.1.2 적대적 데이터 147
__6.1.3 최대 안전 반경 150
__[칼럼] 다양한 ‘거리’ 152
6.2 최대 안전 반경 계산 방법 153
__6.2.1 최대 안전 반경의 근삿값 153
__6.2.2 계산 방법의 개요 154
__6.2.3 안전 반경의 판정 156
__6.2.4 하계와 상계의 계산 방법 158
__6.2.5 하계와 상계의 단계적 계산 방법 161
__[칼럼] 시그모이드 함수에 대한 하계 함수와 상계 함수의 정의 166
6.3 튜토리얼 172
__6.3.1 DNN 모델의 변환 172
__6.3.2 CNN-Cert의 실행 174
__6.3.3 타깃 분류 그룹핑의 변경 185

CHAPTER 7 커버리지 검증 기법 187
7.1 커버리지 검증 187
__7.1.1 커버리지 검증의 목적 187
__7.1.2 커버리지 검증의 체계 190
__[칼럼] 인간의 추론과 AI의 추론 190
__[칼럼] 검증을 수월하게 수행하기 위한 식 변형 193
__[칼럼] SAT Solver와 SMT Solver의 동작 194
7.2 XGBoost 모델의 커버리지 검증 195
__7.2.1 예제 모델의 커버리지 검증 195
__[칼럼] 전제조건과 검증 특성 202
__[칼럼] 커버리지 검증을 단시간 내에 수행하는 방법 206
__7.2.2 학습 완료 모델에서 논리식으로의 변환 207
__7.2.3 커버리지 검증 도구의 구조 211
7.3 검증 특성을 만족하지 않는 입력 데이터 범위의 탐색 217
__7.3.1 예제 모델의 조건 비적합 범위의 검색 217
__7.3.2 조건 비적합 범위 탐색 도구의 구조 222
7.4 DNN 모델의 커버리지 검증 225
__7.4.1 예제 모델의 커버리지 검증 225
__7.4.2 학습 완료 모델로부터 논리식으로의 변환 234
__7.4.3 커버리지 검증 도구의 구조 238
7.5 요약 241

APPENDIX A 각종 파일의 표기법 243
A.1 XGBoost 입출력 데이터 정의 파일의 표기법 243
A.2 DNN 입출력 데이터 정의 파일의 표기법 244
A.3 검증 조건 파일의 표기법 245

맺음말 247
찾아보기 249

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.