장바구니 담기 close

장바구니에 상품을 담았습니다.

데이터 사이언스 입문

데이터 사이언스 입문

  • 김진 ,최정아
  • |
  • 마소캠퍼스
  • |
  • 2020-02-29 출간
  • |
  • 240페이지
  • |
  • 172 X 235 X 20 mm /478g
  • |
  • ISBN 9791196752521
판매가

18,000원

즉시할인가

16,200

배송비

2,300원

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
16,200

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




본 도서는 빅데이터, R, Python, 인공지능 등 모호했던 개념들을 명확하게 이해하고, 단기간에 데이터 사이언스 전체 프로세스를 파악하여 실무에 즉시 적용 가능한 데이터 분석 기법들을 알아본다. 또한 데이터 분석에 필요한 통계 지식을 어려운 통계 기호를 전혀 사용하지 않고, 사례를 통해 통계적 시각을 확보할 수 있다. 이 책을 통해 실무자들은 현실의 의사결정 과정에 데이터 분서 스킬을 적용함으로써 기업의 급속 성장을 꾀할 것이다.

이 책의 주요 주제는 다음과 같다.
■데이터 사이언스의 정의와 필수 역량
■데이터 분석 목적에 맞는 데이터 수집 방법 및 가공 방법
■방대한 데이터를 한눈에 알아볼 수 있는 데이터 시각화 방법
■데이터 분석에 필요한 통계 이해를 위해 복잡하고 어려운 통계 기호를 전혀 사용하지 않고 세상을 통계로 이해하는 시각 확보
■데이터 분석 사례를 통해 배우는 실무 즉시 적용 가능한 데이터 분석 스킬 소개
■스스로 데이터를 공부하는 인공지능(AI) 학습 시스템인 머신러닝과 딥러닝의 이해
■데이터 사이언스 입문자를 위한 다양한 데이터 분석 도구 추천

모든 것이 데이터로 이루어진 시대, 쉽고 실용적인 데이터 사이언스 입문서로 데이터 분석에 뛰어들어라
개념 확립부터 구체적 적용 방법까지 배우는 데이터 분석, 풍부한 국내외 사례와 함께 제시하는 통계 활용법

정보의 시대를 거쳐 빅데이터 시대로 넘어오면서 수많은 정보와 데이터가 생성되었고, 사회 여러 분야에서 데이터가 폭넓게 활용되고 있다. 기존의 무의미하게 보였던 데이터들이 현재는 미래 비즈니스의 성패를 가르는 중요한 자원이 되었다. 이에 많은 기업들은 비즈니스 혁신에 유의미한 통찰을 얻기 위해 다양한 빅데이터 분석 플랫폼을 개발하여 고객의 니즈를 정밀하게 파악하고 있다.
그러나 데이터 분석이 가져다 주는 이점들만 인지하고 있을 뿐, 활용하는 방법을 모른다면 무한한 가능성의 데이터는 그저 무용지물이다.
그렇다면 데이터 분석, 어떻게 기본기를 다져야 할까?
이 책은 데이터 분석 역량을 갖추는 것을 돕기 위해서 ‘데이터 사이언스 프로세스’라는 프레임워크를 기반으로 설계했으며, 듣기만해도 어려운 데이터 분석 이론들을 일반인들도 쉽게 이해할 수 있도록 다채로운 사례와 함께 설명하고 있다. 나아가 깊이 있는 데이터 분석에 필요한 통계 지식은 전문 용어나 수식으로 설명해주는 대신, 유용한 사례와 함께 각 검증 방법을 설명하여 실생활에서 통계에 대한 아이디어를 얻을 수 있다.
더불어, 저자 김진, 최정아는 10년이상 경력의 Education/마케팅전문가로 현장에서 얻은 경험을 바탕으로 현직 실무자로서 알려줄 수 있는 즉시 적용 가능한 분석 방법을 제시한다. 데이터 분석 역량을 높여줄 『데이터 사이언스 입문』 도서를 통해 여러분이 담당하고 있는 실무 영역에서의 유의미한 인사이트를 얻길 바란다.

[책속으로 이어서]
“데이터 사이언스 분야에 입문할 때 R과 Python 중 어느 것을 배울지 많이 고민될 것이다. 간단한 기준으로 접근하자. 내가 원하는 분석 모델을 만들어 낼 기술적인 자신감이 있고 다양한 분야에서 자유롭게 활용하고 싶다 면, 개발 언어에 가까운 Python이 적합할 수 있다. 그러나, 개발자가 될 생각은 없고 조사 및 실험 결과, 사회의 다양한 데이터를 탐색해 패턴을 찾아 내며 결과를 시각화하는 것이 중요한 연구 및 비즈니스 목적이 강하다면 R 로 입문할 것을 추천한다.”
-p218, 『대표적인 데이터 분석 도구』 중에서


목차


PART 1 데이터 사이언스의 이해
01 데이터 분석의 목적은 더 나은 의사 결정이다
02 도대체 데이터란 무엇인가?
03 데이터 분석에 필요한 4가지 역량

PART 2 데이터 분석 프로세스와 데이터 취합
01 데이터 분석 프로세스
02 데이터 취합과 크롤링
03 데이터 전처리

PART 3 탐색적 데이터 분석과 기술통계
01 탐색적 데이터 분석이란?
02 기술 통계량과 차트
03 분산과 표준편차는 변동성을 가리킨다
04 일반적인 것과 특별한 것

PART 4 샘플 데이터로 전체를 예측할 수 있는가?
01 전수조사의 문제점
02 몬테카를로 동전 실험과 표본오차
03 중심 극한의 정리
04 표준오차와 적정 표본 수
05 표본오차와 비표본오차
06 무작위 추출과 근거 피라미드

PART 5 가설 수립과 유의성 검정
01 네이만-피어슨 추론과 베이즈 추론
02 표준 통계학의 역사
03 귀무가설과 대립가설
04 유의수준과 유의확률
05 표준 통계학의 가설 검정 단계
06 유의확률 계산 도구
07 언제 어떤 검정법이 필요한가?
08 카이제곱 검정: 월마트 영수증 분석
09 T 검정: 두 표본 집단간의 평균의 비교
10 회귀분석: 노벨상을 수여한 구호 사업

PART 6 머신러닝과 데이터 분석 모델링
01 알고리즘과 데이터 분석 모델
02 데이터 분석 모델의 복잡도와 성능
03 인공지능과 머신러닝, 그리고 딥러닝
04 머신러닝이 탁월한 효과를 발휘하는 순간
05 베이즈 추론과 축차합리성
06 널리 알려진 머신러닝 알고리즘

PART 7 대표적인 데이터 분석 도구
01 알고리즘 구현 언어
02 입문자 추천 데이터 분석 도구
03 자, 이제 남은 건?
04 저자의 말

Appendix - 주요 데이터 분석 도구 소개

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.