장바구니 담기 close

장바구니에 상품을 담았습니다.

안녕, 트랜스포머

안녕, 트랜스포머

  • 이진기
  • |
  • 에이콘출판
  • |
  • 2022-07-29 출간
  • |
  • 260페이지
  • |
  • 188 X 235 X 16 mm
  • |
  • ISBN 9791161756325
판매가

24,000원

즉시할인가

21,600

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
21,600

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




◈ 이 책에서 다루는 내용 ◈

◆ N-gram을 이용한 자연어 처리 기법
◆ 자연어 처리를 위한 RNN 기반의 AI 모델 구조 및 장단점
◆ 어텐션 네트워크의 탄생 배경과 핵심 원리
◆ 어텐션 네트워크를 활용한 트랜스포머의 구조
◆ BERT의 구조 및 사전학습/파인튜닝 방법
◆ BERT 이후의 AI 모델들
◆ 자연어 처리에 대한 메타러닝 방법

◈ 이 책의 대상 독자 ◈

어느 정도 파이썬 코드를 읽고 구현할 수 있으며 머신러닝에 대한 기초 역량이 있는 독자를 대상으로 저술했다. 파이썬을 접해본 적 없거나 머신러닝에 입문하는 독자가 공부하기에 어려울 수 있다.

◈ 이 책의 구성 ◈

1장에서는 언어 모델에 관한 내용을 다뤘다. 언어 모델이 무엇인지 확률적으로 정의한 후, N-gram 기법을 이용해서 언어 모델을 설명하고 그 과정을 코드를 통해 구현했다. 또한 N-gram 이후에 오랫동안 사용됐던 인공지능 모델인 RNN 계열의 인공지능 모델도 설명했다. RNN 계열의 언어 모델도 간단하게 학습해볼 수 있도록 샘플 코드를 구현했다.
2장에서는 어텐션에 대해서 자세하게 다뤘다. 어텐션은 트랜스포머의 핵심을 이루는 연산이다. 어텐션 연산을 RNN 계열에 추가했을 때 어떠한 장점이 있는지 설명했하고 관련된 샘플 코드도 공부해볼 수 있도록 구현했다.
3장부터 본격적으로 트랜스포머의 구조를 다뤘다. 2장에서 다룬 어텐션을 기반으로 트랜스포머를 어떻게 구현했는지 구조적으로 설명했다.
4장에서는 BERT 모델에 대해서 설명했다. BERT를 사전 학습하는 방법에 대해서 소개했고, 사전학습된 모델을 파인튜닝하는 방법에 대해서도 소개하며 또한 BERT 이후에 발표된 개선된 모델도 몇 가지 소개했다.
5장에서는 GPT 계열의 모델을 설명했다. GPT2에서부터는 메타러닝의 개념이 추가된다. 자연어 처리에서 메타러닝이 왜 필요하고 어떤 방법으로 학습되는지 소개했다. 다만 GPT2/GPT3의 정확한 학습 방법은 공개되지 않았기 때문에 학습 과정은 코드로 구현하지 못했다.
마지막으로 부록에서는 딥러닝 모델의 양자화에 대해서 살펴본다. 딥러닝 모델의 성능이 비약적으로 발전했지만 그와 동시에 모델의 연산량과 파라미터 수도 굉장히 많아졌다. 큰 모델을 간단하게 경량화할 수 있는 방법으로 양자화가 있다. 부록에서는 양자화의 기본 원리에 대해서 다루고 4장에서 살펴본 BERT를 파인 튜닝해서 학습한 분류 모델을 경량화하는 내용을 다룬다.


목차


1장 다음 단어는요? 언어 모델
__1.1. 언어 모델은 확률 게임
__1.2. N-gram 언어 모델
____1.2.1. 텍스트 전처리
____1.2.2. 제로 카운트 해결하기
____1.2.3. N-gram 모델 학습하기
____1.2.4. N-gram 언어 모델의 한계
__1.3. Word2Vec 기반의 언어 모델
__1.4. RNN 기반의 언어 모델
__1.4.1. RNN의 구조
__1.4.2. GRU 언어 모델 구현하기
__1.4.3. GRU 언어 모델로 문장 생성하기

2장 집중해 보자! 어텐션
__2.1. 하나의 벡터로 모든 정보를 담는 RNN
__2.2. 왜 어텐션(Attention)하지 않지?
__2.3. 어떻게 어텐션(Attention)하지?
____2.3.1. 묻고 참고하고 답하기
____2.3.2. 어텐션 계산해 보기
____2.3.3. 어텐션 구현하기
____2.3.4 모델링 학습하기

3장 안녕, 트랜스포머
__3.1. 트랜스포머의 구조
__3.2. 트랜스포머 구현하기
____3.2.1. 인코더
__3.3. Why Transformer
__3.4. 트랜스포머 학습 결과
____3.4.1. Perplexity(PPL)
____3.4.2. BLEU 스코어

4장 중간부터 학습하자! 사전학습과 파인튜닝
__4.1. 사전학습과 Fine-Tuning
__4.2. BERT
____4.2.1. BERT의 모델 구조와 이해하기
____4.2.2. BERT 모델의 입력 이해하기
____4.2.3. 사전학습 이해하기
____4.2.4. Masked Language Model(MLM)
____4.2.5. Next Sentence Prediction(NSP)
____4.2.6. 사전학습을 위한 데이터셋 준비와 Self-supervised Learning
____4.2.7. 사전학습 파헤치기
____4.2.8. 사전학습 정리하기
____4.2.9. Fine-Tuning 이해하기
____4.2.10. 텍스트 분류 모델로 파인튜닝하기
____4.2.11. 질의응답 모델로 파인튜닝하기
__4.3. GPT
____4.3.1. GPT의 사전학습
____4.3.2. Masked Self-Attention
__4.4. RoBERTa
____4.4.1. 정적 또는 동적 마스킹 전략
____4.4.2. NSP 전략
____4.4.3. 배치 사이즈와 데이터셋 크기
__4.5. ALBERT
____4.5.1. Factorized Embedding Parameterization
____4.5.2. Cross-layer Parameter Sharing
____4.5.3. Sentence Order Prediction(SOP)
____4.5.4. ALBERT 정리
__4.6. ELECTRA
____4.6.1. 학습 구조
____4.6.2. RTD
__4.7. DistilBERT
____4.7.1. 지식 증류
____4.7.2. DistilBERT의 구조와 성능 비교
__4.8. BigBird
____4.8.1. 전체 문장에 대한 어텐션, 글로벌 어텐션
____4.8.2. 가까운 단어에만 집중하기, 로컬 어텐션
____4.8.3. 임의의 토큰에 대한 어텐션, 랜덤 어텐션
____4.8.4. 토큰 길이에 따른 연산량 비교
__4.9. 리포머
____4.9.1. 트랜스포머 구조의 문제점
____4.9.2. LSH 어텐션
____4.9.3. Reversible 트랜스포머
__4.10. GLUE 데이터셋
____4.10.1. CoLA
____4.10.2. SST-2 데이터셋
____4.10.3. MRPC
____4.10.4. QQP
____4.10.5. STS-B
____4.10.6. MNLI
____4.10.7. QNLI
____4.10.8. RTE
____4.10.9. WNLI
____4.10.10. GLUE 데이터셋의 평가 지표

5장 어떻게 배우지? 메타러닝
__5.1. 학습을 위한 학습, 메타러닝
__5.2. 메타러닝을 이용한 Amazon 리뷰 감정 분류 학습하기
____5.2.1. 데이터셋과 데이터로더 만들기
__5.3. GPT2에서의 메타러닝
____5.3.1. GPT2를 학습하기 위한 접근 방법
____5.3.2. GPT2의 학습 데이터셋과 멀티태스크
____5.3.3. GPT2 성능 평가 결과
____5.3.4. GP2를 통한 문장 생성
____5.3.5. GPT2를 이용한 퓨샷 러닝

부록. 양자화
__1.1. 양자화에 대한 수학적인 이해와 코드 구현
__1.2. 양자화된 행렬을 이용한 행렬 곱셈과 덧셈
__1.3. 동적 양자화와 정적 양자화
__1.4. BERT 양자화하기

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.