장바구니 담기 close

장바구니에 상품을 담았습니다.

돈 되는 파이썬 인공지능 프로그래밍

돈 되는 파이썬 인공지능 프로그래밍

  • 아카이시마사노리
  • |
  • 위키북스
  • |
  • 2021-06-17 출간
  • |
  • 352페이지
  • |
  • 175 X 235 X 18 mm
  • |
  • ISBN 9791158392574
판매가

25,000원

즉시할인가

22,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
22,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




★ 이 책에서 다루는 내용 ★

◎ 다섯 가지 사례를 통해 실전 AI 개발 방법을 익힌다
영업 성공률이 높은 고객을 추려내는 등의 다섯 가지 실무와 밀접한 업무를 대상으로 파이썬을 이용해 AI를 직접 구현한다. AI를 만드는 법과 AI로 어떤 일을 할 수 있는지 구체적으로 익힌다.

◎ 적용 대상 업무 선택부터 구현까지 혼자 해낼 수 있다
이 책을 읽으면 현장의 도메인 전문가 역할은 물론이고 간단한 수준이라면 AI 구현을 직접 할 수 있다. 데이터 사이언티스트와 같은 전문가를 필요로 했던 기존과 비교해, 개념 검증 수준의 구현 검증 주기를 훨씬 빠르게 할 수 있다. ‘AI 프로젝트를 보는 안목’ 또한 기를 수 있다.

◎ AI 개발의 다섯 가지 주요 개발 단계를 설명한다
‘데이터 확인’부터 ‘튜닝’까지 파이썬 코드를 직접 실행해보며 AI 개발의 주요 다섯 단계를 자세히 설명한다. 그중에서도 AI가 도출한 결과를 평가하는 ‘평가’ 단계가 매우 중요하다. 단순히 정답을 맞힌 비율인 ‘정확도’ 외에 ‘정밀도’, ‘재현율’ 등 다양한 평가지표를 용도에 맞춰 사용하며 AI를 업무에 활용할 수 있게 한다.

◎ 수학적 지식이 없어도 AI를 이용할 수 있다
AI 알고리즘의 구체적인 내용을 몰라도 모델을 최적화할 수 있다. 알고리즘의 역치를 조금 변경하는 정도로도 예측 결과에서 ‘영업 성공률이 높은 고객’의 수를 원하는 대로 조절할 수 있다. 이런 식으로 AI 모델을 자유롭게 활용하는 여러 가지 테크닉을 제공한다.

◎ 웹 브라우저만 있어도 파이썬 코드를 실행할 수 있다
복잡한 환경 설정 없이 웹 브라우저에서 곧바로 파이썬 코드를 실행할 수 있다. 구글에서 제공하는 클라우드 서비스인 Google Colab에서 사용할 수 있는 노트북 파일 형태로 예제 코드를 제공하기 때문이다. 예측 결과나 분석 결과를 그래프나 표로 일목요연하게 출력할 수 있다.


목차


▣ 01장: 업무와 머신러닝 프로젝트
1.1 이 책의 목적
1.2 머신러닝 프로젝트의 주요 역할 및 대상 독자
1.3 머신러닝 개발 프로세스
1.4 앞으로 도메인 전문가에게 필요하게 될 스킬
1.5 이 책의 구성

▣ 02장: 머신러닝 모델의 처리 패턴
2.1 AI와 머신러닝의 관계
2.2 머신러닝의 세 가지 학습 방식
2.3 지도 학습에 속하는 처리 패턴
__2.3.1 분류
__2.3.2 회귀
__2.3.3 시계열 분석
2.4 비지도 학습에 속하는 처리 패턴
__2.4.1 연관 분석
__2.4.2 클러스터링
__2.4.3 차원축소
2.5 처리 패턴을 선택하는 방법
2.6 딥러닝과 구조화/비구조화 데이터

▣ 03장: 머신러닝 모델을 개발하는 순서
3.1 모델을 개발하는 순서
3.2 예제에 사용할 데이터와 모델의 목적
__3.2.1 예제에 사용할 데이터
__3.2.2 모델의 목적
3.3 모델 구현하기
__3.3.1 (1) 데이터 읽어 들이기
__3.3.2 (2) 데이터 확인
__3.3.3 (3) 데이터 전처리
__3.3.4 (4) 데이터 분류
__3.3.5 (5) 알고리즘 선택하기
__3.3.6 (6) 학습
__3.3.7 (7) 예측
__3.3.8 (8) 평가
__3.3.9 (9) 튜닝

▣ 04장: 머신러닝 모델 개발의 중요 포인트
4.1 데이터 확인
__4.1.1 수치적ㆍ통계적으로 분석하는 방법
__4.1.2. 시각적인 분석 및 데이터 확인 방법
4.2 데이터 전처리
__4.2.1 불필요한 필드 삭제하기
__4.2.2 누락 값 처리하기
__4.2.3 이진 레이블값 필드를 숫자 값 필드로 만들기
__4.2.4 다중 레이블값 필드를 숫자 값 필드로 만들기
__4.2.5 데이터 정규화
__4.2.6 그 외 데이터 전처리 기법
4.3 알고리즘 선택하기
__4.3.1 대표적인 분류 알고리즘과 특징
__4.3.2 예제 코드에서 사용할 데이터
__4.3.3 로지스틱 회귀
__4.3.4 서포트 벡터 머신 (커널)
__4.3.5 신경망 알고리즘
__4.3.6 결정 트리
__4.3.7 랜덤 포레스트
__4.3.8 XGBoost
__4.3.9 알고리즘을 선택하는 방법
4.4 평가
__4.4.1 혼동행렬
__4.4.2 정확도, 정밀도, 재현율, F-점수
__4.4.3 확률값과 역치
__4.4.4 PR 곡선과 ROC 곡선
__4.4.5 입력 필드의 중요도
__4.4.6 회귀 모델을 평가하는 방법
4.5 튜닝
__4.5.1 알고리즘 선택하기
__4.5.2 하이퍼파라미터 최적화
__4.5.3 교차 검증법
__4.5.4 그리드 서치
__4.5.5 그 외의 튜닝 기법

▣ 05장: 업무의 요구 조건과 처리 패턴
5.1 영업 성공 예측(분류)
__5.1.1 처리 패턴에 적합한 업무 분야
__5.1.2 예제 데이터의 설명 및 유스케이스
__5.1.3 모델의 개요
__5.1.4 데이터 읽어 들이기부터 데이터 확인까지
__5.1.5 데이터 전처리 및 데이터 분할
__5.1.6 알고리즘 선택하기
__5.1.7 학습, 예측, 평가 단계
__5.1.8 튜닝
__5.1.9 중요도 분석
5.2 날씨를 이용한 매출 예측 (회귀)
__5.2.1 처리 패턴에 적합한 업무 분야
__5.2.2 예제 데이터의 설명 및 유스케이스
__5.2.3 모델의 개요
__5.2.4 데이터 읽어 들이기부터 데이터 확인까지
__5.2.5 데이터 전처리와 데이터 분할
__5.2.6 알고리즘 선택하기
__5.2.7 학습 및 예측
__5.2.8 평가
__5.2.9 튜닝
__5.2.10 중요도 분석
5.3 계절 등 주기성 필드로 매출 예측하기 (시계열 분석)
__5.3.1 처리 패턴에 적합한 업무 분야
__5.3.2 예제 데이터에 대한 설명 및 유스케이스
__5.3.3 모델의 개요
__5.3.4 데이터 읽어 들이기부터 데이터 확인까지
__5.3.5 데이터 전처리와 데이터 분할
__5.3.6 알고리즘 선택하기
__5.3.7 학습 및 예측
__5.3.8 평가
__5.3.9 튜닝 (1단계)
__5.3.10 튜닝 (2단계)
__5.3.11 회귀와 시계열 분석 처리 패턴의 용도
5.4 추천 상품 제안 (연관 분석)
__5.4.1 처리 패턴에 적합한 업무 분야
__5.4.2 예제 데이터의 설명 및 유스케이스
__5.4.3 모델의 개요
__5.4.4 데이터 읽어 들이기부터 데이터 확인까지
__5.4.5 데이터 전처리
__5.4.6 알고리즘 선택 및 분석
__5.4.7 튜닝
__5.4.8 관계 그래프 시각화하기
__5.4.9 고급 연관 분석
5.5 계층별 고객 판매 전략 (클러스터링, 차원 축소)
__5.5.1 처리 패턴에 적합한 업무 분야
__5.5.2 예제 데이터의 설명 및 유스케이스
__5.5.3 모델의 개요
__5.5.4 데이터 읽어 들이기부터 데이터 확인까지
__5.5.5 클러스터링
__5.5.6 클러스터링 결과 분석
__5.5.7 차원축소
__5.5.8 차원축소를 활용하는 방법

▣ 06장: AI 프로젝트를 성공시키기 위한 프로젝트 초기 요령
6.1 머신러닝 적용 분야 선택하기
__6.1.1 처리 패턴과 적합한 업무 분야
__6.1.2 지도 학습의 생명은 정답 데이터
__6.1.3 AI는 정확도 100%를 달성할 수 없다
6.2 업무 데이터 수집 및 확인
__6.2.1 데이터의 소재 파악
__6.2.2 타 부서의 데이터 협조 구하기
__6.2.3 데이터의 품질
__6.2.4 원-핫 인코딩 문제

▣ 부록1: Google Colaboratory 기본 사용법

▣ 부록2: 머신러닝을 위한 파이썬 입문
__부록 2.1 넘파이 입문
__부록 2.2 판다스 입문
__부록 2.3 matplotlib 입문

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.