장바구니 담기 close

장바구니에 상품을 담았습니다.

데이터가 뛰어노는 AI 놀이터 캐글

데이터가 뛰어노는 AI 놀이터 캐글

  • 가도와키 다이스케, 사카타 류지, 호사카 게이스케, 히라마쓰 유지
  • |
  • 한빛미디어
  • |
  • 2021-05-10 출간
  • |
  • 428페이지
  • |
  • 183 X 235 mm
  • |
  • ISBN 9791162244234
판매가

35,000원

즉시할인가

31,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
31,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




캐글 상위 랭킹 진입에 필요한 필살기를 한 권에 정리했다!

상당수의 데이터 과학자가 자신의 실력을 검증하고자 ‘캐글’에 도전합니다. 대회에서는 실제 데이터를 이용하기 때문에 일반적이지 않은 데이터 처리 방법과 기법이 많이 활용됩니다. 그러한 내용을 이해하고 스스로 활용할 수 있는 능력을 갖추는 것은 경진 대회는 물론이고 실무에서도 모델을 구현하는 데 많은 도움이 됩니다.

최대한 많은 기술과 사례를 한 권에 담기 위해 노력했습니다. 정형 데이터를 다루는 대회를 대상으로 하여 문제 설정이 명확하게 주어진 가운데 성능이 높은 모델을 만들려면 어떻게 해야 하고 무엇을 주의해야 할지에 초점을 맞추었습니다. 특히 특징을 생성하는 방법, 검증, 파라미터 튜닝 등 다른 도서에서는 잘 다루지 않는 노하우나 포인트도 설명합니다. 처음부터 전부 이해하려 하기보다는 우선 빠르게 읽으면서 관심 있는 부분만 집중적으로 읽는 것을 권합니다. 또는 대회 도중에 힌트가 필요할 때 살짝 보거나 헷갈리는 부분을 사전적으로 참조하여 읽어도 좋습니다.

캐글에 도전하고 싶지만 어떻게 해야 할지 막막하거나, 매번 같은 방법만 사용하여 다른 방법도 알고 싶거나, 더 높은 순위권에 진입하는 것이 목표라면 꼭 읽어야 하는 책입니다. 경진 대회에서 쓰이는 기술은 실무에도 유용하므로 대회에 흥미가 없어도 읽으면 도움이 될 것입니다.

주요 내용
● 정밀도가 높은 모델 구축하기
● 데이터에서 특징 추출하기
● 변수를 변환해 특징 생성하기
● 평가지표를 이용해 예측 결과 최적화하기
● 하이퍼파라미터 튜닝
● 여러 모델을 조합해 예측하는 앙상블 기법과 스태킹(stacking)
● 시계열 데이터 종류와 취급 방법

[추천사]
머신러닝 기초를 공부하고 캐글에 이제 막 발을 내딛는 사람과 캐글 경험이 있지만 대회 코드 작성에 어려움을 느낀 사람에게 훌륭한 길잡이 역할을 해줍니다. 상위권에 랭크된 노트북의 솔루션을 꼼꼼하게 리뷰해준 덕분에 여러 대회에 다양한 기법으로 접근해볼 수 있습니다.
_신홍재, 학생

캐글에 처음 도전할 때 가장 어려운 점은 자신이 수행할 수 있는 스킬과 대회에서 필요한 스킬의 단계 차이가 크게 나는 것이라고 생각합니다. 이 책은 머신러닝 기초부터 다양한 대회에서 기법이 실제로 적용되는 부분까지 세세하게 알려주기 때문에 많은 데이터를 직접 만지며 스킬의 단계 차이를 줄일 수 있습니다.
_이창우, 학생


목차


CHAPTER 1 경진 대회
1.1 경진 대회란?
1.2 경진 대회 플랫폼
1.3 경진 대회 참가부터 종료까지
1.4 경진 대회의 참가 의미
1.5 상위권 진입의 중요 팁

CHAPTER 2 경진 대회의 평가지표
2.1 경진 대회의 종류
2.2 경진 대회의 데이터셋
2.3 평가지표
2.4 평가지표와 목적함수
2.5 평가지표의 최적화
2.6 평가지표 최적화 사례
2.7 데이터 정보 누출

CHAPTER 3 특징 생성
3.1 이 장의 구성
3.2 모델과 특징
3.3 결측값 처리
3.4 수치형 변수 변환
3.5 범주형 변수 변환
3.6 날짜 및 시간변수 변환
3.7 변수의 조합
3.8 다른 정형 데이터와의 결합
3.9 집약하여 통계량 구하기
3.10 시계열 데이터 처리
3.11 차원축소와 비지도 학습의 특징
3.12 기타 기법
3.13 경진 대회의 특징 사례

CHAPTER 4 모델 구축
4.1 모델의 기본 이해
4.2 경진 대회에서 사용하는 모델
4.3 GBDT
4.4 신경망
4.5 선형 모델
4.6 기타 모델
4.7 모델의 기타 팁과 테크닉

CHAPTER 5 모델 평가
5.1 모델 평가란?
5.2 검증 방법
5.3 시계열 데이터의 검증 방법
5.4 검증 포인트와 기술

CHAPTER 6 모델 튜닝
6.1 매개변수 튜닝
6.2 특징 선택과 중요도
6.3 편중된 클래스 분포의 대응

CHAPTER 7 앙상블 기법
7.1 앙상블이란?
7.2 간단한 앙상블 기법
7.3 스태킹
7.4 앙상블 대상 모델의 선택 기준
7.5 경진 대회의 앙상블 사례

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.