장바구니 담기 close

장바구니에 상품을 담았습니다.

주머니 속의 머신러닝

주머니 속의 머신러닝

  • 맷해리슨
  • |
  • 제이펍
  • |
  • 2021-04-30 출간
  • |
  • 332페이지
  • |
  • 128 X 188 mm
  • |
  • ISBN 9791191600001
판매가

15,000원

즉시할인가

13,500

배송비

2,300원

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
13,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평



이 책의 특징
머신러닝을 배울 때 참고하며 읽기 좋은 책
도구의 종류, 사용 방법, 각종 파라미터 등을 빠르게 훑으며 기억을 상기할 수 있는 좋은 레퍼런스 자료
머신러닝 모델의 구성 요소, 데이터와 모델의 평가 및 분석을 다양한 도구로 접근해 다각적으로 바라보는 방법을 제시

이 책의 대상 독자
머신러닝에 관심 있는 프로그래머
머신러닝의 방법론을 정립하고 싶은 분
머신러닝의 개념을 다시 한번 정리하고 싶은 분
머신러닝의 다양한 라이브러리와 시각화 방법을 알고 싶은 분


목차


CHAPTER 1 소개
1.1 사용된 라이브러리 2
1.2 Pip을 이용한 설치 5
1.3 Conda를 이용한 설치 7

CHAPTER 2 머신러닝 과정에 대한 개요

CHAPTER 3 분류 문제 둘러보기: 타이타닉 데이터셋
3.1 프로젝트 구조의 제안 11
3.2 필요한 패키지 12
3.3 질문을 하자 13
3.4 데이터에 관한 용어 14
3.5 데이터의 수집 15
3.6 데이터의 정리 16
3.7 특징의 생성 24
3.8 샘플 데이터 27
3.9 데이터의 대치 27
3.10 데이터의 표준화 29
3.11 리팩터링 30
3.12 베이스라인 모델 31
3.13 다양한 알고리즘 32
3.14 스태킹 34
3.15 모델 만들기 35
3.16 모델의 평가 36
3.17 모델의 최적화 37
3.18 오차 행렬 38
3.19 ROC 곡선 40
3.20 학습 곡선 41
3.21 모델의 배포 42

CHAPTER 4 누락된 데이터
4.1 누락된 데이터의 분석 46
4.2 누락된 데이터의 삭제 50
4.3 데이터의 대치 51
4.4 지시자 열의 추가 52

CHAPTER 5 데이터의 정리
5.1 열의 이름 53
5.2 누락된 값의 교체 54

CHAPTER 6 탐색
6.1 데이터의 크기 57
6.2 요약 통계 58
6.3 히스토그램 59
6.4 산점도 60
6.5 조인트 플롯 61
6.6 쌍 격자 63
6.7 박스 플롯과 바이올린 플롯 65
6.8 두 순서형 값의 비교 66
6.9 상관관계 68
6.10 라드비즈 72
6.11 평행 좌표 74

CHAPTER 7 데이터 전처리
7.1 표준화 77
7.2 범위 조정 79
7.3 더미 변수 80
7.4 레이블 인코더 82
7.5 프리퀀시 인코딩 83
7.6 문자열에서 범주 가져오기 83
7.7 그 밖의 범주형 인코딩 85
7.8 날짜형 데이터의 특징 공학 88
7.9 col_na 특징의 추가 89
7.10 수동적 특징 공학 90

CHAPTER 8 특징의 선택
8.1 공선성을 가진 열 94
8.2 라소 회귀 97
8.3 재귀적 특징 제거 99
8.4 상호 정보량 100
8.5 주성분 분석 102
8.6 특징 중요도 102

CHAPTER 9 불균형 범주의 문제
9.1 다른 평가 지표 사용하기 103
9.2 트리 기반 알고리즘과 앙상블 103
9.3 모델에 페널티 부과하기 104
9.4 소수집단 데이터 업샘플링하기 105
9.5 소수집단 데이터 생성하기 106
9.6 과반수집단 데이터를 다운샘플링하기 106
9.7 업샘플링 후 다운샘플링하기 108

CHAPTER 10 분류
10.1 로지스틱 회귀 111
10.2 나이브 베이즈 116
10.3 서포트 벡터 머신 118
10.4 K-최근접 이웃 122
10.5 디시전 트리 125
10.6 랜덤 포레스트 134
10.7 XGBoost 139
10.8 LightGBM을 사용한 그래디언트 부스팅 150
10.9 TPOT 156

CHAPTER 11 모델 선택
11.1 검증 곡선 161
11.2 학습 곡선 163

CHAPTER 12 분류용 평가 지표로 평가하기
12.1 오차 행렬 165
12.2 평가 지표 168
12.3 정확도 170
12.4 재현율 171
12.5 정밀도 171
12.6 F1 171
12.7 분류 보고서 172
12.8 ROC 173
12.9 정밀도-재현율 곡선 174
12.10 누적 이득 도표 175
12.11 리프트 곡선 177
12.12 범주의 균형 179
12.13 범주 예측 오류 180
12.14 차별 임계치 181

CHAPTER 13 모델 설명
13.1 회귀 계수 183
13.2 특징 중요도 184
13.3 LIME 184
13.4 트리 기반 모델의 해석 186
13.5 부분 의존성 도표 187
13.6 대리 모델 191
13.7 SHAP 192

CHAPTER 14 회귀
14.1 베이스라인 모델 200
14.2 선형 회귀 200
14.3 SVM 204
14.4 K-최근접 이웃 207
14.5 디시전 트리 209
14.6 랜덤 포레스트 216
14.7 XGBoost 회귀 220
14.8 LightGBM 회귀 분석 227

CHAPTER 15 회귀용 평가 지표로 평가하기
15.1 평가 지표 233
15.2 잔차 도표 236
15.3 이분산성 237
15.4 정규 잔차 238
15.5 예측 오차 도표 240

CHAPTER 16 회귀 모델의 해석
16.1 SHAP 243

CHAPTER 17 차원성 감소
17.1 PCA 250
17.2 UMAP 269
17.3 t-SNE 275
17.4 PHATE 279

CHAPTER 18 클러스터링
18.1 K-평균 285
18.2 응집 클러스터링 293
18.3 클러스터의 이해 296

CHAPTER 19 파이프라인
19.1 분류 파이프라인 303
19.2 회귀 파이프라인 306
19.3 PCA 파이프라인 307

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.