장바구니 담기 close

장바구니에 상품을 담았습니다.

AI 사고를 위한 인공지능 교육

AI 사고를 위한 인공지능 교육

  • 한선관 ,류미영 ,김태령
  • |
  • 성안당
  • |
  • 2021-01-26 출간
  • |
  • 552페이지
  • |
  • 189 X 257 X 27 mm /1036g
  • |
  • ISBN 9788931556919
판매가

29,000원

즉시할인가

26,100

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
26,100

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

목차


추천의 글
추천사
저자 약력
머리말
인공지능 교육의 가이드라인

1부 인공지능 사회
1. 인공지능의 시대
2. 생활 속 인공지능
2.1 인간에게 도전장을 내미는 인공지능
2.2 인공지능 심사위원
2.3 창의성을 발휘하는 인공지능
3. 세상을 바꾸는 인공지능
3.1 인공지능으로 바뀌는 사회의 통계적 접근
3.2 인공지능과 직업
4. 인공지능의 영향
4.1 AI 시대를 대비하는 인류
4.2 인공지능의 미래
4.3 직업과 인공지능의 일자리 대체

2부 교육과 인공지능
1. 국가 경쟁력, 인공지능
2. 사활을 건 인공지능 인재 양성
3. 국외의 인공지능 교육 사례
4. 국내의 인공지능 교육 정책
5. 인공지능 교육의 필요성
6. 인공지능 교육 도입의 근거
7. 인공지능 교육의 접근
8. 인공지능 교육을 바라보는 다양한 관점
9. 인공지능 교육의 유형
10. 인공지능 통합 교육 모형
11. 인공지능 교육이 추구하는 사고력
12. 인공지능 사고의 필요성
13. 컴퓨팅 사고력과 인공지능 사고력
14. 인공지능 사고력의 정의
15. 인공지능 사고력의 확장
16. 강(초)인공지능 시대를 대비하는 교육
17. 모두를 위한 인공지능 교육

3부 인공지능의 지식 체계
1. 인공지능의 기초
1.1 인공지능의 역사
1.2 인공지능과 인간 지능
1.3 에이전트 모형
1.4 인공지능과 소프트웨어
1.5 인공지능의 기초 지식
1.6 인공지능 알고리즘과 활용 분야
1.7 인공지능의 영역
1.7.1 내적 기능
1.7.2 외적 기능
1.7.3 상호작용
1.8 인공지능과 학문적 체계의 구성도
2. 기계 탐색: 문제와 탐색
2.1 문제와 해답, 상태
2.2 무작위적 탐색 방법
2.2.1 너비우선 탐색
2.2.2 깊이우선 탐색
2.2.3 깊이제한 탐색
2.2.4 양방향 탐색
2.3 정보를 사용하는 탐색 전략들
2.3.1 그리디 알고리즘
2.3.2 에이스타(A*) 알고리즘
2.4 최적화 탐색 전략
2.4.1 언덕 오르기 탐색
2.4.2 유전 알고리즘
2.5 게임 탐색
2.5.1 최소-최대 알고리즘
2.5.2 몬테카를로 알고리즘
2.6 제약 조건 만족 문제(백트래킹 탐색)
2.7 그 외의 탐색과 탐색 문제
3. 기계 추론: 지식과 추론
3.1 지식 기반 인공지능의 구성 요소
3.2 프레임
3.3 논리
3.3.1 명제 논리
3.4 의미망
3.5 계획 수립
3.5.1 계획 수립의 알고리즘
3.5.2 계획 수립 문제의 형태
3.5.3 계획 수립 그래프
3.5.4 그 밖의 언어들
3.6 불확실성
3.6.1 불확실성의 기본적인 확률
3.6.2 베이즈 정리
3.7 확률적 추론
3.8 의사결정
4. 기계학습: 자료와 학습
4.1 기계학습 개요
4.2 지도학습
4.2.1 회귀
4.2.2 선형회귀
4.2.3 로지스틱 회귀
4.2.4 결정 트리
4.2.5 SVM
4.2.6 랜덤 포레스트
4.2.7 나이브 베이즈
4.3 비지도학습
4.3.1 K-Means
4.3.2 가우시안 혼합 모델
4.3.3 주성분 분석
4.3.4 인공 신경망
4.3.5 딥러닝
4.3.6 합성곱 신경망
4.4 강화학습
4.4.1 MDP와 MRP
4.4.2 A3C
4.5 빅데이터
5. 데이터 과학: 자료와 과학
5.1 데이터 과학의 학문 분야
5.2 데이터 과학의 절차
5.3 데이터 과학 분야의 전문가 유형
5.4 데이터 과학의 도구
5.5 데이터 과학과 BI(비즈니스 인텔리전스)의 차이점
5.5.1 데이터 과학의 응용 분야
5.6 데이터 과학과 머신러닝의 주요 차이점
6. 기계 인식: 감각과 인식
6.1 패턴 인식
6.2 영상 형성
6.2.1 기본 영상 감지
6.3 영상 처리
6.3.1 모서리 검출
6.3.2 텍스처
6.3.3 광학 흐름
6.3.4 영상 분할
6.4 물체 인식
6.4.1 HOG
6.4.2 R-CNN
6.4.3 YOLO & SSD
6.5 3차원 세계
6.6 음성 인식
7. 자연어 처리: 언어와 소통
7.1 언어 분석의 확률적 접근
7.2 NLP의 주요 아이디어 - 텍스트 분류
7.3 자연어의 특징과 자연어 처리 구성 요소
7.3.1 형태학적 분석 및 어휘 분석
7.3.2 구문 분석
7.3.3 의미 분석
7.3.4 담화 통합과 실용적 분석
7.4 딥러닝 기반 자연어 처리
7.5 화자 인식
8. 로보틱스: 행동과 작용
8.1 로봇의 하드웨어
8.1.1 로봇의 센서
8.1.2 로봇의 구동기
8.2 로봇의 지각
8.2.1 위치 결정
8.2.2 지도 작성
8.3 로봇 계획 수립
8.4 로봇 소프트웨어
9. 인공지능 이슈: 인공지능과 인간, 사회적
영향
9.1 약인공지능과 강인공지능
9.2 의식과 감각질
9.3 인공지능의 윤리적 문제
9.3.1 책임성: 첵임의 주체
9.3.2 투명성: 설명 가능 인공지능, 활용의
투명성
9.3.3 공정성: 데이터 편향성, 활용 공정성
9.3.4 기타 윤리적 문제

4부 인공지능을 이해하는 교육
1. AI 이해 교육의 개요
2. 소프트웨어 교육과 AI 이해 교육과의 관계
2.1 AI 이해 교육에서 요구하는 인재상과 학습자 역량
2.2 AI 이해 교육에서 추구하는 역량
2.3 AI 이해 교육의 목표
3. AI 이해 교육과정의 설계 유형
4. AI 이해 교육의 내용 체계
4.1 AI 이해 교육의 세 가지 대영역
4.1.1 ‘지능 발현’ 영역
4.1.2 ‘상호작용’ 영역
4.1.3 ‘사회 영향’ 영역
4.2 3영역의 학습을 위한 일곱 가지 대주제
4.3 AI 이해 교육을 위한 표준 프레임워크
5. AI 이해 교육 과정의 설계 방안
6. AI 이해 교육의 방법
6.1 지식 신장을 위한 교수·학습 모형
6.2 기능 신장을 위한 교수·학습 모형
6.3 태도를 위한 교수·학습 모형
7. AI 이해 교육 계층별 교수·학습 전략
8. AI 이해 교육의 평가

5부 인공지능을 활용하는 교육
1. AI 활용 교육의 개요
2. AI 활용 교육을 통한 역량 신장
3. 교육 주체와 AI 활용 교육
4. AI 활용 교육을 위한 도구
5. AI 활용 교육의 유형
5.1 AI 교과 활용 교육
5.2 AI 융합 교육(STEAM 교육)
5.3 AI 기반 교육
5.4 교육 정책 업무의 AI 활용
6. AI 교과 활용 교육
6.1 음악 교과 AI 활용 교육 예시
6.1.1 음악 교과의 성격
6.1.2 음악 교육의 목표
6.2 각 교과별 AI 활용 교육 사례
6.2.1 도덕(윤리) 교과 AI 활용 교육
6.2.2 국어 교과 AI 활용 교육
6.2.3 수학 교과 AI 활용 교육
6.2.4 사회 교과 AI 활용 교육
6.2.5 과학 교과 AI 활용 교육
6.2.6 체육 교과 AI 활용 교육
6.2.7 미술 교과 AI 활용 교육
6.2.8 실과(기술·가정) 교과 AI 활용 교육
6.2.9 영어 교과 AI 활용 교육
7. AI 융합 교육
7.1 AI 서비스를 활용한 산업 융합 프로젝트의 절차
7.2 산업 융합 문제해결 수업 사례: 자동차 운전 지원
8. AI 기반 교육(온라인 교육 시스템, 에듀테크)
8.1 AI와 에듀테크의 만남
8.2 교육에서의 AI 활용 영역
8.2.1 대학교의 활용 사례
9. 교육 정책 업무의 AI 활용
9.1 교육 정책에서 AI를 활용하기 위한 다양한 변수와 요인
9.2 교육 정책에서 AI 활용 사례
10. AI 활용 교육을 위한 통합 플랫폼

6부 인공지능을 바라보는 교육
1. AI 가치 교육의 개요
2. AI 윤리에 대한 초창기 연구
3. 산업 분야별 AI 윤리 이슈
3.1 제조 분야: 자율주행자동차
3.2 금융 분야: 로보어드바이저
3.3 의료 분야: 건강 의료
3.4 군사 분야: 자율 무기 체계
4. AI 윤리의 국내외 사례
5. AI 가치 교육의 접근
5.1 국내외의 AI 윤리 교육 현황
6. AI 가치 교육의 주제 구성
6.1 AI 가치 교육의 다양한 주제 구성
7. AI 가치 교육의 모델
8. 인간 중심, 선한 AI
8.1 건강을 위한 AI 프로젝트
8.2 지구 환경을 위한 AI 프로젝트
8.3 장애인을 위한 AI 프로젝트
8.4 문화 유산을 위한 AI 프로젝트
8.5 인도주의를 위한 AI
9. 책임성, 책임 있는 AI
10. 투명성, 설명 가능한 AI
10.1 설명 기법의 네 가지 모드
10.2 설명 가능한 AI 모드의 개발 방법
11. 개인정보보호 vs. 데이터 3법
11.1 정보통신망법 개정안
11.2 신용정보법 개정안
12. 공정성과 비차별성
12.1 알고리즘 도덕성
13. 안정성과 신뢰성

7부 인공지능 수업의 실제
◈ AI 수업의 유형과 접근 방법
1. AI 지식 중심의 수업
1.1 지식 중심 수업 1: AI 인지 모델링 수업
1.1.1 AI 인지 모델링 수업 전략 - 커넥티드 전략
1.1.2 AI 인지 모델링 수업 단계
1.2 지식 중심 수업 2: AI 개념 형성 수업
1.3 지식 중심 수업 3: AI 발견 탐구 수업
1.4 지식 중심 수업 4: AIT 사고 기반 수업(SW·AI 연계 수업)
2. AI 기능 중심 수업
2.1 AI 기능 중심 수업 1: AI 교육 플랫폼을
활용한 프로그래밍 수업
2.2 AI 기능 중심 수업 2: 데이터 분석 프로그래밍 수업
2.3 AI 기능 중심 수업 3: AI 프레임워크를 활용한 프로그래밍 수업
2.4 AI 텐저블 컴퓨팅 수업 1: AI 엣지 컴퓨팅
2.5 AI 텐저블 컴퓨팅 수업 2: AI 메이커 활동
2.6 AI 텐저블 컴퓨팅 수업 3: AI 로봇 활용
3. AI 태도 중심 수업
3.1 AI 태도 중심 수업 1; 기술 중심 수업
3.2 AI 태도 중심 수업 2; 사회 중심 수업
3.3 AI 태도 중심 수업 3: 윤리 중심 수업

8부 인공지능 교육 실습을 위한 지원
1. AI 교육을 위한 실습 자원의 유형
2. 범용적인 AI 상용 플랫폼
2.1 구글 AutoML
2.2 슈퍼어노테이트
2.3 애플 CreateML
2.4 프릿츠 AI
2.5 런웨이ML
2.6 Obviously AI
2.7 MakeML
2.8 페이스북
2.9 아마존
2.10 마이크로소프트
2.11 IBM
2.12 네이버
3. AI 챗봇 플랫폼
3.1 AI 챗봇 플랫폼의 종류
3.1.1 다이얼로그플로우
3.1.2 매니챗
3.1.3 챗봇닷컴
3.1.4 챗퓨얼
3.1.5 모바일멍키
3.1.6 프레시챗
4. AI 교육을 위한 특화 플랫폼
4.1 플랫폼의 종류
4.1.1 ML4Kids
4.1.2 티처블 머신
4.1.3 코그니메이트
4.2 AI 체험형
4.2.1 플레이그라운드 텐서플로
4.2.2 위드 구글 AI 실험실
4.2.3 오토드로우
4.2.4 퀵드로우
4.2.5 마젠타
4.2.6 컴퓨터 비전
4.2.7 이미지 자동 편집
4.2.8 단어 인식 게임
4.3 교육용 프로그래밍 언어 도구
4.3.1 EPL
4.3.2 스크래치
4.3.3 엔트리
4.3.4 엠블록
4.3.5 딥 아이(Deep AI)
5. AI 개발을 위한 프로그래밍 언어
5.1 프로그래밍 언어의 종류
5.1.1 Python
5.1.2 R
5.1.3 LISP
5.1.4 Prolog
5.1.5 C/C++
5.1.6 Java
5.1.7 Javascipt
5.1.8 Julia
5.1.9 기타 프로그래밍 언어
5.2 대표적인 AI 프레임워크 라이브러리
5.2.1 Theano
5.2.2 Tensorflow
5.2.3 Keras
5.2.4 Lasagne
5.2.5 Caffe
5.2.6 Deep Learning 4j
5.2.7 MxNet
5.2.8 Torch
5.2.9 CNTK
5.3 파이썬 핵심 라이브러리와 도구들
5.3.1 Numpy
5.3.2 Scipy
5.3.3 matapololib
5.3.4 pandas
5.3.5 주피터 노트북
5.4 AI 프로그래밍 개발 학습
5.4.1 코드닷오알지
5.4.2 생활 코딩
5.4.3 프롤로그 교육
5.5 AI 학습형
5.5.1 Al4School
5.5.2 Al4TEACHER
5.5.3 테크노베이션
5.5.4 Element of AI
5.5.5 edX
5.5.6 SW-AI 교육 포털
5.5.7 창의 컴퓨팅
5.5.8 구글의 AI A-Z
5.5.9 AI 크래시 코스
5.5.10 마이크로소프트의 AI 학습 사이트
5.5.11 오픈 AI

참고 문헌

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.