장바구니 담기 close

장바구니에 상품을 담았습니다.

텐서플로로 하는 딥러닝 기초와 응용

텐서플로로 하는 딥러닝 기초와 응용

  • 파올로갈리오니
  • |
  • 에이콘출판
  • |
  • 2020-11-30 출간
  • |
  • 412페이지
  • |
  • 188 X 235 X 24 mm
  • |
  • ISBN 9791161754741
판매가

30,000원

즉시할인가

27,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
27,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




★ 이 책에서 다루는 내용 ★

■ 머신러닝과 신경망 기법 파악 후 과제 해결
■ 개발 속도를 높이기 위한 TF 2.0의 새로운 기능 적용
■ 텐서플로 데이터셋(tfds)와 tf.data API를 사용해 고효율 데이터 입력 파이프라인 구축
■ 텐서플로 허브로 전이학습 및 미세 조정 수행
■ 객체 탐지 및 시맨틱 분할 문제 해결을 위한 네트워크 정의와 훈련
■ 이미지 생성과 데이터 분포를 생성하는 GAN 훈련
■ SavedModel 파일 형식을 사용한 모델이나 일반 연산 그래프 실무 투입

★ 이 책의 대상 독자 ★

텐서플로 구조와 새로운 특징이 궁금한 동시에 신경망을 다루는 데이터 과학자, 머신러닝 개발자, 딥러닝 연구자, 기초 통계 배경지식을 가진 개발자를 대상으로 한다. 이 책을 최대한 활용하려면 파이썬 프로그래밍 언어 관련 실무 지식이 필요하다.

★ 이 책의 구성 ★

1장, ‘머신러닝이란?’에서는 머신러닝의 기초를 다룬다. 지도, 비지도, 준지도학습이 무엇이며 이러한 구분이 왜 중요한지 살펴본다. 또한 데이터 파이프라인을 만드는 방법, 알고리즘의 성능을 측정하는 방법, 결과를 검증하는 방법을 배운다.
2장, ‘신경망과 딥러닝’에서는 신경망에 초점을 맞춘다. 머신러닝 모델의 강점과 네트워크 학습 방법, 실제로 모델 파라미터 업데이트가 어떻게 수행되는지를 배우게 된다. 이 장을 마치면 역전파(backpropagation)와 네트워크 파라미터 업데이트 내부를 이해하게 된다. 도전적인 과제를 해결하는 데 심층 신경망 구조가 왜 필요한지 알게 될 것이다.
3장, ‘텐서플로 그래프 아키텍처’에서는 1.x 버전과 2.x 버전 사이에 공유되는 텐서플로 구조를 다룬다.
4장, ‘텐서플로 2.0 아키텍처’에서는 텐서플로 1.x와 2.x의 차이를 보여준다. 이 두 가지 버전을 모두 사용해 간단한 머신러닝 모델을 개발해본다. 두 버전의 공통적인 특징을 이해하게 될 것이다.
5장, ‘효율적인 데이터 입력 파이프라인 및 Estimator API’에서는 tf.data API를 사용해 전체 데이터 입력 파이프라인을 정의하는 방법과 tf.estimator API를 사용해 실험을 정의하는 방법을 다룬다. tf.data와 tf.io.gfile API의 모든 기능을 활용해 복잡하고 효율적인 입력 파이프라인을 만들 수 있게 될 것이다.
6장, ‘텐서플로 허브를 사용한 이미지 분류’에서는 케라스 API와의 긴밀한 통합을 활용한 텐서플로 허브를 사용해 전이(fine-tuning)학습 및 미세 조정을 쉽게 수행하는 방법을 다룬다.
7장, ‘객체 탐지 소개’에서는 분류기를 확장하는 방법을 다루며, 이를 경계 상자의 좌표를 회귀하는 객체 탐지기로 만들고 더욱 복잡한 객체 탐지 구조에 관해 소개한다.
8장, ‘시맨틱 분할과 사용자 정의 데이터셋’에서는 빌더 시맨틱 분할 네트워크를 구현하는 방법과 이러한 종류의 작업에 관한 데이터셋을 준비하는 방법, 모델을 훈련하고 성능을 측정하는 방법을 다룬다. U-Net을 사용해 시맨틱 분할 문제를 해결해본다.
9장, ‘생성적 적대 신경망’에서는 이론적이고 실무적인 관점에서 GAN을 다룬다. 생성 모델의 구조와 텐서플로 2.0을 사용해 적대적 훈련을 쉽게 수행할 수 있는 방법을 이해하게 될 것이다.
10장, ‘모델을 실무에 적용하기’에서는 훈련된 모델을 완전한 애플리케이션으로 전환하는 방법을 다룬다. 훈련된 모델을 지정된 표현(SavedModel)으로 내보내기하고, 이를 완전한 애플리케이션으로 사용하는 방법도 다룬다. tfgo 라이브러리를 사용해 파이썬 내부, TensorFlow.js, Go에서도 훈련된 모델을 내보내고 활용할 수 있다.

★ 옮긴이의 말 ★

21세기 IT 기술 중 가장 섹시한(!) 분야를 꼽자면 한치의 망설임 없이 “AI(Artificial intelligence)”를 꼽을 것이다. AI는 금융, 의료, 운송, 교육, 보안, 농업 등 많은 산업에 접목해 자동화 및 맞춤형 서비스를 선보이고 있다. 가까운 미래에 AI는 단순 노동 업무를 넘어 전문직 영역으로 확대될 것이다. 많은 이들은 AI가 현존하는 일자리를 많이 줄일 것이라 생각하지만, 혁신적인 기술이 나올 때마다 일자리는 변모해왔고 더 다양해졌다.
이 책은 텐서플로(TF, TensorFlow) 2.0 버전의 새로운 기능과 텐서플로 2.0을 활용한 신경망과 머신러닝 기반 애플리케이션을 만드는 방법에 대해 편리한 가이드북 역할을 해줄 것이다. 머신러닝과 신경망에 대한 이론적 개요로 시작해 TF 1.x 및 TF 2.0 버전의 라이브러리 사용 방법에 대한 설명으로 이어진다. 그림와 실제 코드들을 보고 따라 하기 쉬운 예제로 구성돼 있어서, 신경망이 작동하는 방식을 자연스레 이해하고 구현할 수 있게 한다(책에서 제공하는 코드는 깃허브를 통해 다운로드할 수 있다).
다음으로 TF 2.0에서 제공하는 새로운 모듈을 사용해 넓은 범위의 신경망 아키텍처를 구축하기 위한 최적화 기술과 알고리즘을 마스터하는 방법을 배울 수 있다. 나아가, 분류 문제를 해결하기 위한 컨볼루션 신경망(CNN, Convolution Neural Network), 시맨틱 분할(Semantic Segmentation), 학습 데이터 확보를 위한 생성적 적대 신경망(GAN, Generative Adversarial Network) 등과 같은 더 복잡한 신경망 아키텍처를 구현하는 방법도 알 수 있다.
AI 전문가가 절대적으로 부족한 지금, 이 책을 통해 독자들이 머신러닝과 AI 알고리즘 설계 능력을 한층 더 발전시켜, 가능성이 무한한 시장을 선점하고 수없이 많은 기회를 쟁취하기를 희망한다.
최민환

개발자마다 혹은 속한 조직에 따라 선호하는 딥러닝 라이브러리가 다양한 실정이다. 또한 논문 저자가 구현 코드를 공개하는 경우에도 딥러닝 라이브러리와 버전이 다양하다. 연구자나 개발자 입장에서는 이 코드를 완벽히 이해한 뒤 다시 본인의 선호 라이브러리로 구현할 상황이 생기게 된다. 이 책은 여러 라이브러리 중 텐서플로 1.x, 2.x 버전 사이의 큰 구조 변화를 소개한다. 이 책을 살펴보면서 텐서플로 1.x, 2.x의 근간을 이루는 개념을 이해하고 케라스와의 통합으로 얻는 이점에 대해 배울 수 있을 거라 기대한다. 이 책이 딥러닝을 공부하는 분들에게 조금이나마 보탬이 되면 좋겠다.
김창엽


목차


1부. 신경망 기초
1장. 머신러닝이란?
__데이터셋의 중요성
____n차원 공간
____차원의 저주
__지도학습
____거리와 유사도-k-NN 알고리즘
____모수 모델
____모델의 성능 측정-평가 지표
__비지도학습
__준지도학습
__요약
__실습

2장. 신경망과 딥러닝
__신경망
____생물학적 뉴런
____인공 뉴런
____완전 연결 레이어
____활성화 함수
____손실함수
____파라미터 초기화
__최적화
____경사하강법
____경사하강법 최적화 알고리즘
____역전파와 자동 미분
__컨볼루션 신경망
____컨볼루션 연산자
____2D 컨볼루션
____볼륨 간 2D 컨볼루션
____1×1×D 컨볼루션
__일반화
____드롭아웃
____데이터 증강
____얼리스타핑
____배치 정규화
__요약
__실습

2부. 텐서플로 기초
3장. 텐서플로 그래프 아키텍처
__환경 설정
____텐서플로 1.x 환경
____텐서플로 2.0 환경
__데이터 흐름 그래프
____주요 구조-tf.Graph
____그래프 정의-tf.Operation부터 tf.Tensor까지
____그래프 배치-tf.device
____그래프 실행-tf.Session
____정적 그래프의 변수
__모델 정의와 훈련
____tf.layers 기반 모델 정의
____자동 미분-손실과 옵티마이저
__파이썬을 활용한 그래프 다루기
____플레이스홀더에 전달
____요약 기록
____모델 파라미터 저장과 모델 선택
__요약
__실습

4장. 텐서플로 2.0 아키텍처
__프레임워크 다시 배우기
__케라스 프레임워크와 모델
____순차 API
____함수 API
____서브클래스 기법
__즉시 실행과 새로운 기능들
____베이스라인 예제
____세션이 아닌 함수
____더 이상의 전역 변수는 없다
____제어 흐름
____GradientTape
____사용자 정의 훈련 루프
____모델 상태 저장과 복원
____요약과 평가 지표
____오토그래프
__코드베이스 마이그레이션
__요약
__실습

5장. 효율적인 데이터 입력 파이프라인 및 Estimator API
__효율적인 데이터 입력 파이프라인
____입력 파이프라인 구조
__tf.data.
____성능 최적화
____데이터셋 구축
____데이터 증강
____텐서플로 데이터셋-tfds
____케라스 통합
____즉시 실행 통합
__Estimator API
____데이터 입력 파이프라인
____사용자 정의 Estimator
____사전 정의 Estimator
____케라스 모델 사용하기
____Canned Estimator 활용
__요약
__실습

3부. 신경망의 응용 분야
6장. 텐서플로 허브를 사용한 이미지 분류
__데이터 수집
__전이학습
____텐서플로 허브
____피처 추출기로 Inception v3 사용
____모델에 데이터 적용
____모델 작성-hub.KerasLayer
____훈련과 평가
____훈련 속도
__미세 조정
____미세 조정 시기
____텐서플로 허브 통합
____훈련 및 평가
____훈련 속도
__요약
__실습

7장. 객체 탐지 소개
__데이터 수집
__객체 지역화
____회귀 문제로서의 지역화
____Intersection over Union
____평균 정밀도
____mAP
____훈련 스크립트 개선
__분류와 지역화
____멀티태스크 러닝
____더블 헤드 네트워크
____앵커 기반 탐지기
____앵커 상자
__요약
__실습

8장. 시맨틱 분할 및 사용자 정의 데이터셋 빌더
__시맨틱 분할
____문제점
____디컨볼루션-전치 컨볼루션
____U - Net 아키텍처
__텐서플로 DatasetBuilder 만들기
____계층적 구조
____데이터셋 클래스와 DatasetInfo
____데이터셋 분할
____예제 생성
____빌더 사용하기
__모델 훈련과 평가
____데이터 준비
____훈련 루프와 케라스 콜백
____평가와 추론
__요약
__실습

9장. 생성적 적대 신경망
__GAN과 해당 애플리케이션의 이해
____가치함수
____비포화 가치함수
____모델 정의와 훈련 단계
____GAN 응용 분야
____무조건부 GAN
____데이터 준비
____생성기 정의
____판별기 정의
____손실함수 정의
____무조건부 GAN의 적대적 훈련 프로세스
__조건부 GAN
____조건부 GAN에 관한 데이터 가져오기
____조건부 GAN에서 생성기 정의
____조건부 GAN에서 판별기 정의
____적대적 훈련 과정
__요약
__실습

10장. 모델을 실무에 적용하기
__SavedModel 직렬화 형식
____기능
____케라스 모델로 SavedModel 생성하기
____일반 함수를 SavedModel로 변환하기
__파이썬 배포
____일반 연산 그래프
____케라스 모델
____플랫 그래프
__지원하는 배포 플랫폼
____TensorFlow.js
____Go 바인딩과 tfgo
__요약
__실습

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.