장바구니 담기 close

장바구니에 상품을 담았습니다.

머신 러닝을 위한 수학 with 파이썬 R

머신 러닝을 위한 수학 with 파이썬 R

  • 이원상
  • |
  • 길벗
  • |
  • 2020-08-24 출간
  • |
  • 288페이지
  • |
  • 183 X 235 X 12 mm
  • |
  • ISBN 9791165212537
판매가

24,000원

즉시할인가

21,600

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
21,600

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




왜 데이터 과학에서 수학이 필요할까?
데이터 과학에서 가장 중요한 것은 단연 데이터다. 데이터를 사용하려면 데이터를 수집하고 정제하여 정량된 값으로 변환해야 하는데 이때 필요한 것이 수학이다. 선형대수, 미분과 적분, 확률과 통계로 데이터를 요약하고 파악할 수 있기 때문이다. 또한, 데이터를 바탕으로 문제를 정의하고 논리적으로 해결하는 데 수학적 접근이 큰 역할을 한다. 이처럼 수학은 다양한 분야에서 여러 사람과 협업할 때 이들 간의 의사소통을 도와주는 공통어가 되기도 한다.

어떻게 머신 러닝에서 수학을 활용할까?
선형대수는 마르코프 체인, 주성분 분석 모형에서 응용하고 미적분은 Bass 모형, 경사 하강법, 뉴턴랩슨 메서드에서 응용한 예제를 살펴본다. 마지막으로 확률과 통계는 상관분석과 분산분석, 포아송, 로지스틱 회귀 모형에서 응용해본다.

무슨 언어로 실습하면 좋을까?
데이터 과학에서 가장 많이 사용하는 언어는 파이썬과 R이다. 여기서 파이썬과 R 모두 실습할 수 있게 구성하였으며, 두 언어로 머신 러닝을 어떻게 구현하는지 알아보자.


목차


1장 데이터 과학과 파이썬 소개
1.1 데이터 과학이란?
__1.1.1 아나콘다 설치하기
1.2 선형대수, 미분과 적분, 확률, 통계의 필요성
1.3 그리스 문자와 연산 기호
1.4 데이터와 변수의 이해
__1.4.1 텍스트 마이닝으로 살펴본 비정형 데이터의 분석
1.5 파이썬의 자료 구조
__1.5.1 파이썬 기본 빌트인 구조
__1.5.2 넘파이, 판다스 기반의 자료 구조
__1.5.3 파일로부터 자료 구조 생성하기
1.6 파이썬 실습
1.7 R 실습
1.8 핵심 요약

2장 머신 러닝을 위한 선형대수
2.1 선형대수의 필요성
2.2 벡터와 공간, 행렬과 사상
__2.2.1 벡터의 이해
__2.2.2 벡터의 사칙 연산
__2.2.3 행렬로의 확장
2.3 행렬의 내적과 외적
2.4 행렬 연산의 의미와 활용
__2.4.1 분석모형 응용 - 유사도행렬의 계산
2.5 행렬식, 역행렬 그리고 일차방정식
__2.5.1 분석모형 응용 - 마르코프 체인
2.6 행렬의 분해: 고윳값과 고유 벡터, 대각화
__2.6.1 분석모형 응용 - 주성분 분석
2.7 파이썬 실습
2.8 R 실습
2.9 핵심 요약

3장 미분과 적분의 이해와 응용
3.1 함수의 개념 이해
__3.1.1 함수와 합성 함수
__3.1.2 미분과 적분을 이해하기 위한 몇 가지 개념
3.2 미분의 이해
__3.2.1 간단한 미분 실습
__3.2.2 분석모형 응용 - 신제품 확산 모형
3.3 적분의 이해
__3.3.1 리만 적분 또는 정적분
3.4 미적분학의 기본정리, 편미분 그리고 경사 하강법
__3.4.1 미적분학의 기본정리
__3.4.2 편미분
__3.4.3 분석모형 응용 - 경사 하강법과 뉴턴랩슨 메서드
3.5 파이썬 실습
3.6 R 실습
3.7 핵심 요약

4장 확률과 통계
4.1 기초 통계 개념: 모집단/표본, 모수/통계량
4.2 통계량의 이해: 단변수 통계량
4.3 통계량의 이해: 다변수 통계량
4.4 확률이란
4.5 조건부 확률과 베이즈 정리
4.6 분석모형 응용-확률을 활용한 패턴의 발견
4.7 파이썬 실습
4.8 R 실습
4.9 핵심 요약

5장 확률 분포와 통계적 추론
5.1 확률 변수와 확률 분포
5.2 이산형 확률 분포
__5.2.1 이항 분포
__5.2.2 포아송 분포
5.3 연속형 확률 분포
__5.3.1 정규 분포와 중심 극한 정리
__5.3.2 t 분포
__5.3.3 χ2 분포
__5.3.4 F 분포
5.4 통계적 추론, 점 추정과 구간 추정
5.5 가설 검정
5.6 다양한 통계 검정
__5.6.1 정규성 검정
__5.6.2 t 검정
__5.6.3 쌍체 t 검정
__5.6.4 등분산 검정: F 검정
__5.6.5 χ2 검정 178
5.7 가설 검정의 오류 178
5.8 파이썬 실습 179
5.9 R 실습 182
5.10 핵심 요약

6장 상관분석과 분산분석
6.1 상관분석
6.2 분산분석
__6.2.1 일원 분산분석
__6.2.2 다중 비교
__6.2.3 이원 분산분석
6.3 상관분석의 활용
6.4 파이썬 실습
6.5 R 실습
6.6 핵심 요약

7장 선형 회귀 분석과 모형 확장
7.1 얇고도 깊은 분석의 목적
7.2 선형 회귀 분석
7.3 선형 회귀 분석의 주요 개념
7.4 모형의 예측과 오차의 측정
7.5 회귀모형의 확장1: 포아송 회귀모형 소개
7.6 선형모형의 확장2: 로지스틱 회귀모형 소개
__7.6.1 분류모형의 평가
7.7 파이썬 실습
7.8 R 실습
7.9 핵심 요약

8장 머신 러닝, 딥러닝 그리고 AI
8.1 데이터 분석에서 머신 러닝의 부상
8.2 딥러닝의 배경 및 개요
8.3 다양한 딥러닝 도구
__8.3.1 텐서플로 설치하기
8.4 딥러닝의 활용
8.5 파이썬 실습
8.6 R 실습
8.7 핵심 요약

부록 A 텐서플로 GPU 버전 설치하기
부록 B R 설치하기
부록 C Colab 사용하기

찾아보기

도서소개


 

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.