정규 분포에서 확산 모델까지, 생성 모델 완전 정복!
수식과 코드로 명쾌하게 풀어낸 최고의 생성 모델 안내서!
명불허전 『밑바닥부터 시작하는 딥러닝』 시리즈가 이번에는 생성형 AI와 함께합니다.
스테이블 디퓨전, 미드저니, DALL-E 등과 같은 이미지 생성 AI가 다양한 분야에서 관심을 얻고 활용되고 있습니다. 이들 기술의 배경에는 딥러닝을 활용한 "생성 모델"이 있습니다. 이번 편에서는 바로 생성 모델에서 주목받고 있는 "확산 모델(Diffusion Model)"을 다룹니다.
정규 분포, 최대 가능도 추정(MLE)과 같은 기본 개념에서 시작해 가우스 혼합 모델(GMM), 기댓값 최대화 알고리즘(EM), 변이형 오토인코더(VAE), 계층형 VAE 그리고 확산 모델까지의 여정을 10단계로 나누어 안내합니다. 단순히 이미지나 결과를 전달하는 데 그치지 않고 ‘왜 그렇게 되는지’와 ‘어떻게 그 결과를 얻을 수 있는지’도 빼놓지 않았습니다. 이를 위해 수식을 세심하게 다루며 작은 부분까지 신경 썼습니다.
이론과 실습을 아우르는 체계적인 커리큘럼을 제공하기 때문에 기초부터 차근차근 배우고 실습을 통해 생성 모델의 원리를 깊게 이해할 수 있습니다. 확산 모델을 비롯한 생성 모델을 더욱 깊이 이해하고 응용하고자 하는 모든 이에게 이 책은 든든한 길잡이가 될 것입니다.
대상 독자
(미적분학, 선형대수학 등의 수학과 파이썬 기초 지식이 있으면 좋습니다.)
- 생성 모델 구현 원리와 응용에 대해 궁금한 개발자
- 자연어 처리, 이미지 생성, 음성 합성 등 다양한 분야에 생성 모델을 적용하고 싶은 개발자
주요 내용
- 1장 정규 분포
- 2장 최대 가능도 추정
- 3장 다변량 정규 분포
- 4장 가우스 혼합 모델
- 5장 EM 알고리즘
- 6장 신경망
- 7장 변이형 오토인코더(VAE)
- 8장 확산 모델 이론
- 9장 확산 모델 구현
- 10장 확산 모델 응용
믿고 보는 『밑바닥부터 시작하는 딥러닝』이 새로운 시리즈로 돌아왔습니다. 책을 끝까지 읽고 나니 왜 여전히 많은 사람이 이 시리즈를 딥러닝 입문서로 선택하는지 다시 한번 알게 되었습니다. 이번 편은 전 세계가 주목하는 생성형 AI의 핵심인 확산 모델에 대해 다루며 최신 생성형 인공지능의 탄생 배경에 깔린 이론들을 탄탄한 흐름 속에서 익힐 수 있습니다. 딥러닝을 책으로 공부하다 보면 크게 두 가지 아쉬움을 느끼게 됩니다. 하나는 이론과 실습의 균형이 잘 잡힌 개념서를 찾기 어렵다는 것이고, 다른 하나는 최신 이론을 책으로 접하기가 쉽지 않다는 점입니다. 하지만 이번 편은 두 마리 토끼를 다 잡았다고 생각합니다.
_강민재, 성균관대학교 전자전기공학부