머신러닝 엔지니어링 인 액션 벤 윌슨
☆☆☆☆☆ 평점(0/5)
한빛미디어 | 2023-12-04 출간
판매가
48,000
즉시할인가
43,200
배송비
무료배송
(제주/도서산간 배송 추가비용:3,000원)
상품정보
책 소개
목차
[PART 1 머신러닝 엔지니어링 소개]

CHAPTER 1 머신러닝 엔지니어란
_1.1 ML 엔지니어링이라고 부르는 이유
_1.2 ML 엔지니어링 핵심 원칙
_1.3 ML 엔지니어링의 목표
_1.4 요약

CHAPTER 2 엔지니어링을 사용하는 데이터 과학
_2.1 프로젝트 성공률을 높이는 방법: 프로세스를 적용해 복잡한 전문성 강화하기
_2.2 단순한 토대의 중요성
_2.3 애자일 소프트웨어 엔지니어링의 공동 채택 원칙
_2.4 ML 엔지니어링의 기반
_2.5 요약

CHAPTER 3 프로젝트 계획 수립 및 범위 설정
_3.1 계획 수립: 무엇을 예측할까요?
_3.2 실험 범위 설정: 기대치와 제한
_3.3 요약

CHAPTER 4 의사소통과 프로젝트 규칙 논의
_4.1 의사소통: 문제 정의
_4.2 시간 낭비하지 않기: 크로스펑셔널 팀과의 회의
_4.3 실험 한계 설정
_4.4 비즈니스 규칙 혼돈에 대한 계획 수립
_4.5 결과에 대해 말하기
_4.6 요약

CHAPTER 5 ML 프로젝트 계획 및 연구
_5.1 실험 계획 수립
_5.2 실험 사전 준비 작업
_5.3 요약

CHAPTER 6 프로젝트 테스트 및 평가
_6.1 아이디어 테스트
_6.2 가능성 좁히기
_6.3 요약

CHAPTER 7 프로토타입에서 MVP로
_7.1 튜닝: 지루한 일을 자동화합시다
_7.2 플랫폼과 팀에 적절한 기술 선택
_7.3 요약

CHAPTER 8 MLflow 및 런타임 최적화로 MVP 마무리
_8.1 로깅: 코드, 지표 및 결과
_8.2 확장성 및 동시성
_8.3 요약

[PART 2 프로덕션 준비: 유지 관리 가능한 ML 만들기]

CHAPTER 9 ML 모듈화: 테스트 가능하고 읽기 쉬운 코드 작성
_9.1 모놀리식 스크립트의 개념과 나쁜 이유
_9.2 텍스트 벽으로 된 코드 디버깅
_9.3 모듈화된 ML 코드 설계
_9.4 ML에 TDD 방식 활용
_9.5 요약

CHAPTER 10 코딩 표준 및 유지 관리 가능한 ML 코드 작성
_10.1 ML 코드 스멜
_10.2 네이밍, 구조 및 코드 아키텍처
_10.3 튜플 언패킹 및 유지 관리 대안
_10.4 이슈에 눈 감기: 예외 및 기타 잘못된 관행 사용
_10.5 전역 가변 객체 사용
_10.6 과도하게 중첩된 로직
_10.7 요약

CHAPTER 11 모델의 측정과 그 중요성
_11.1 모델의 기여도 측정
_11.2 A/B 테스트를 활용한 기여도 계산
_11.3 요약

CHAPTER 12 드리프트 주시를 통한 상승세 유지
_12.1 드리프트 감지
_12.2 드리프트 대응
_12.3 요약

CHAPTER 13 ML 개발의 오만함
_13.1 우아하게 복잡한 코드와 과도한 엔지니어링의 차이
_13.2 의도치 않은 난독화: 남이 작성한 코드를 읽을 수 있을까요?
_13.3 성급한 일반화와 최적화 그리고 자신을 드러내기 위해 사용하는 나쁜 방법
_13.4 알파 테스트와 오픈 소스 생태계의 위험성
_13.5 기술 중심 개발 vs. 설루션 중심 개발
_13.6 요약

[PART 3 프로덕션 머신러닝 코드 개발]

CHAPTER 14 프로덕션 코드 작성
_14.1 데이터를 만났나요?
_14.2 피처 모니터링
_14.3 모델 수명 주기의 나머지 항목 모니터링
_14.4 최대한 단순하게 유지하기
_14.5 프로젝트 와이어프레임 작성
_14.6 카고 컬트 ML 행위 피하기
_14.7 요약

CHAPTER 15 품질과 인수 테스트
_15.1 데이터 일관성
_15.2 콜드 스타트와 대비책
_15.3 실사용자 vs. 내부 사용자 테스트
_15.4 모델의 해석 가능성
_15.5 요약

CHAPTER 16 프로덕션 인프라
_16.1 아티팩트 관리
_16.2 피처 스토어
_16.3 예측 서빙 아키텍처
_16.4 요약

[PART 4 부록]

APPENDIX A 빅오 및 런타임 성능 고려 방법
_A.1 빅오란 무엇인가요?
_A.2 예시별 복잡도
_A.3 의사 결정 트리 복잡도 분석
_A.4 일반적인 ML 알고리듬 복잡도

APPENDIX B 개발 환경 설정
_B.1 깔끔한 실험 환경의 예
_B.2 컨테이너를 활용한 의존성 지옥 대응
_B.3 컨테이너 기반의 깨끗한 실험 환경 만들기
책제원정보
ISBN 9791169211758
판형정보 692쪽 / 183 X 235mm
출판사 한빛미디어
출판일 2023-12-04 출간
교환 및 환불안내
도서 교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.
        (카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님의 변심으로 인한 교환 또는 반품시에는 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.

선택된 상품

  • 머신러닝 엔지니어링 인 액션
    43,200원

총 주문금액

43,200