금융 파이썬 완전 정복 2/e 제임스 마 와이밍
☆☆☆☆☆ 평점(0/5)
에이콘출판 | 2023-08-31 출간
판매가
40,000
즉시할인가
36,000
배송비
무료배송
(제주/도서산간 배송 추가비용:3,000원)
상품정보
책 소개
목차
1부. 파이썬 시작하기

1장. 파이썬을 사용한 금융 분석 개요
__파이썬 구하기
____가상 환경 준비
____Jupyter 노트북 실행
____파이썬 기능 개선 제안서
__Quandl 소개
____환경에 맞는 Quandl 설정
__시계열 차트 도식화
____Quandl에서 데이터셋 가져 오기
____주가와 거래량 차트 도식화
____촛대 차트 도식화
__시계열 데이터에 대한 금융 분석
____수익률 도식화
____누적 수익률 도식화
____히스토그램 도식화
____변동성 도식화
____분위수-분위수 도면
____복수의 시계열 데이터 다운로드
____상관 행렬 표시
____상관관계 도식화
____단순이동평균
____지수이동평균 이동
__요약


2부. 금융 개념

2장. 금융에서 선형성의 중요성
__자본 자산 가격 책정 모델과 증권시장선
__차익 거래 가격 결정 이론 모델
__요인 모델의 다변량 선형 회귀
__선형 최적화
____Pulp 받기
____선형 계획법을 사용한 최대화 예제
____선형 프로그램의 결과
____정수 프로그래밍
__행렬을 사용한 선형 방정식 해결
__LU 분해
__촐레스키 분해
__QR 분해
__다른 행렬 대수 방법으로 풀기
____자코비 기법
____가우스-자이델 기법
__요약


3장. 금융의 비선형성
__비선형성 모델링
____비선형 모델의 예
__근 찾기 알고리듬
____증분 검색
____이분법
____뉴턴 기법
____시컨트 기법
____근 찾기 기법 조합
__SciPy의 근 찾기 구현
____근 찾기 스칼라 함수
____일반 비선형 솔버
__요약


4장. 옵션 가격 책정을 위한 수치적 방법
__옵션 소개
__이항 트리로 옵션 가격 책정
__유럽식 옵션 가격 책정
__StockOption 기본 클래스 작성
____이항 트리를 사용한 유럽식 옵션 클래스
____이항 트리를 사용한 미국식 옵션 클래스
____콕스-로스-루빈스타인 모델
____라이젠-라이머 트리 사용
__무료 그릭
____LR 이항 트리를 사용하는 그리스인을 위한 클래스
__옵션 가격 책정의 삼항 트리
____삼항 트리 옵션 가격 책정 모델의 클래스
__옵션 가격 결정의 격자
____이항 격자 사용
____CRR 이항 격자 옵션 가격 책정 모델의 클래스
____삼항 격자 사용
__옵션 가격 설정의 유한 차분
____명시적 기법
____유한 차분 기본 클래스 작성
____암시적 기법
____크랭크-니콜슨 기법
____특이 배리어 옵션의 가격 책정
____유한 차분으로 미국식 옵션 가격 책정
__종합하기: 내재 변동성 모델링
____AAPL 미국식 풋 옵션의 내재 변동성
__요약


5장. 금리와 파생상품 모델링
__고정-수입 증권
__수익률 곡선
__제로 쿠폰 채권 평가
____현물 금리와 제로 금리
__수익률 곡선의 부트스트랩
____수익률 곡선의 부트스트랩 예
____수익률 곡선 부트스트랩 클래스 작성
__선도 금리
__만기 수익률 계산
__채권 가격 계산
__채권 듀레이션
__채권 볼록성
__단기 금리 모델링
____바시첵 모델
____콕스-인거졸-로스 모델
____렌들만과 바터 모델
____브레넨과 슈바르츠 모델
__채권 옵션
____수의상환권부 채권
____상환청구권부 채권
____전환 사채
____우선주
__수의상환권부 채권 옵션의 가격 책정
____바시첵 모델에 의한 제로 쿠폰 채권 가격 책정
____조기 행사 가치
____유한 차이에 의한 정책 반복
____수의상환권부 채권 가격 책정의 기타 고려 사항
__요약


6장. 시계열 데이터의 통계 분석
__다우 존스 산업 평균과30개 구성 요소
____Quandl에서 다우 구성 요소 데이터셋 다운로드
____알파 밴티지
____알파 밴티지 API 키 얻기
____알파 밴티지 파이썬 래퍼 설치
____알파 밴티지에서 DJIA 데이터셋 다운로드
__커널 PCA 적용
____고유 벡터와 고유 값 찾기
____PCA를 사용해 다우 인덱스재구성
__정상성과 비정상성 시계열
____정상성과 비정상성
____정상성 확인
____비정상 프로세스의 유형
____정상성 프로세스의 유형
__증강 딕키-풀러 검증
__추세가 있는 시계열 분석
__시계열을 정상성으로 만들기
____추세 제거
____차분을 사용한 추세 제거
____계절적 분해
____ADF 검정의 단점
__시계열 예측과 예상
____자기 회귀 통합 이동평균
____그리드 검색을 통한 모델 매개변수 찾기
____SARIMAX 모델 적합화하기
____SARIMAX 모델의 예측과 예상
__요약


3부. 실습

7장. VIX를 사용한 대화형 금융 분석
__변동성 파생상품
____STOXX와 Eurex
____EURO STOXX 50 지수
____VSTOXX
____S&P 500 지수
____SPX 옵션
____VIX
__S&P 500과 VIX의 금융 분석
____데이터 수집
____분석 수행
____SPX와 VIX 간의 상관관계
__VIX 지수 계산
____SPX 옵션 데이터 가져오기
____단기와 차기 옵션 찾기
____필요 분 계산
____Calculating the forward SPX Index level
____필요한 선도 행사 가격 찾기
____행사 가격 경계 결정
____행사 가격별 기여도 표 만들기
____변동성 계산
____차기 옵션 계산
____VIX 지수 계산
____여러 VIX 지수 계산
____결과 비교
__요약


8장. 알고리듬 거래 플랫폼 구축
__알고리듬 거래 소개
____공개 API를 사용하는 거래 플랫폼
____프로그래밍 언어 선택
____시스템 기능
__알고리듬 거래 플랫폼 구축
____브로커 인터페이스 설계
____파이썬 라이브러리 요구 사항
____이벤트 기반 브로커 클래스 작성
____가격 이벤트 핸들러 저장하기
____주문 이벤트 핸들러 저장
____포지션 이벤트 핸들러 저장
____가격을 얻기 위한 추상 메서드 선언
____가격 스트리밍을 위한 추상 메서드 선언
____주문을 전송하기 위한 추상 메서드 선언
____브로커 클래스 구현
__평균 회귀 알고리듬 거래 시스템 구축
____평균 회귀 알고리듬 설계
____평균 회귀 트레이더 클래스 구현하기
____이벤트 리스너 추가하기
____평균 회귀 신호 생성기 작성
____거래 시스템 실행
__추세 추종 거래 플랫폼 구축
____추세 추종 알고리듬 설계
____추세 추종 트레이더 클래스 작성
____추세 추종 신호 생성기 작성
____추세 추종 거래 시스템 실행하기
__리스크 관리를 위한 VaR
__요약


9장. 백테스팅 시스템 구현
__백테스팅 소개
____백테스팅의 우려 사항
____이벤트 기반 백테스팅 시스템의 개념
__백테스팅 시스템 설계와 구현
____틱 데이터를 저장하는 클래스 작성
____시장 데이터를 저장하는 클래스 작성
____시장 데이터의 소스를 생성하기 위한 클래스 작성
____주문 클래스 작성
____포지션 추적을 위한 클래스 작성
____추상 전략 클래스 작성
____평균 회귀 전략 클래스 작성
____모듈을 백테스팅 엔진으로 바인딩하기
____백테스팅 엔진 실행
____백테스팅 엔진의 다중 실행
____백테스팅 시스템 개선
__백테스팅 모델에 대한 열 가지 고려 사항
____모델을 제약하는 리소스
____모델 평가 기준
____백테스팅 매개변수의 품질 평가
____모델 위험에 직면할 준비를 하라
____내표본 데이터를 사용한 백테스팅 성능
____백테스팅의 일반적인 함정 해결
____모델에 대한 상식적인 아이디어를 가지라
____모델의 문맥 이해
____올바른 데이터가 있는지 확인하라
____결과 데이터 마이닝
__백테스팅에서 알고리듬에 대한 논의
____k-평균 클러스터링
____k-최근접 이웃 머신러닝 알고리듬
____분류와 회귀 트리 분석
____2k 요인 설계
____유전 알고리듬
__요약


10장. 금융을 위한 머신러닝
__머신러닝 소개
____금융에서 머신러닝의 사용
____지도 학습과 비지도 학습
____지도 머신러닝의 분류와 회귀
____모델 과적합과 과소 적합
____특징 공학
____머신러닝을 위한 scikit-learn
__단일 자산 회귀 모델을 사용한 가격 예측
____OLS에 의한 선형 회귀
____독립과 목표 변수 준비
____선형 회귀 모델 작성
____예측 성능 측정을 위한 위험 척도
____리지 회귀
____기타 회귀 모델
____결론
__교차 자산 모멘텀 모델로 수익 예측
____독립 변수 준비
____목표 변수 준비하기
____다중 자산 선형 회귀 모델
____결정 트리의 앙상블
__분류 기반 머신러닝으로 추세 예측
____목표 변수 준비
____여러 자산의 데이터셋을 입력 변수로 준비하기
____로지스틱 회귀
____분류 기반 예측 측정을 위한 위험 척도
____서포트 벡터 분류기
____다른 유형의 분류기
__머신러닝 알고리듬 사용에 대한 결론
__요약


11장. 금융을 위한 딥러닝
__딥러닝에 대한 간략한 소개
____딥러닝이란 무엇인가?
____인공 뉴런
____활성화 함수
____손실 함수
____최적기
____네트워크 아키텍처
____텐서플로와 기타 딥러닝 프레임워크
____텐서란 무엇인가?
__텐서플로를 사용한 딥러닝 가격 예측 모델
____모델의 특징 공학
____요구 사항
____데이터셋 다운로드
____데이터 확장과 분할
____텐서플로로 인공 신경망 구축
____예측 값과 실제 값 도식화
__Keras를 사용한 신용카드 결제 디폴트 예측
____Keras 소개
____Keras 설치하기
____데이터셋 얻기
____데이터 분할 및 크기 조정
____Keras를 사용해 5개의 은닉 계층이 있는 심층 신경망 설계
____모델의 성능 측정
____Keras 히스토리에 기록된 이벤트 표시
__요약
찾아보기
책제원정보
ISBN 9791161757827
판형정보 464쪽 / 188 X 235mm
출판사 에이콘출판
출판일 2023-08-31 출간
교환 및 환불안내
도서 교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.
        (카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님의 변심으로 인한 교환 또는 반품시에는 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.

선택된 상품

  • 금융 파이썬 완전 정복 2/e
    36,000원

총 주문금액

36,000