MLOps 실전 가이드 노아 기프트
☆☆☆☆☆ 평점(0/5)
한빛미디어 | 2023-07-07 출간
판매가
40,000
즉시할인가
36,000
배송비
무료배송
(제주/도서산간 배송 추가비용:3,000원)
상품정보
책 소개
목차
CHAPTER 1 MLOps 세상으로 초대
_1.1 머신러닝 엔지니어와 MLOps의 부상
_1.2 MLOps란?
_1.3 DevOps와 MLOps
_1.4 MLOps 욕구 단계 이론
__1.4.1 DevOps 구현
__1.4.2 깃허브 액션을 사용하여 지속적 통합 구성하기
__1.4.3 DataOps와 데이터 엔지니어링
__1.4.4 플랫폼 자동화
__1.4.5 MLOps
_1.5 마치며
연습해보기
생각해보기


CHAPTER 2 MLOps를 시작하기 위한 기본 개념
_2.1 배시와 리눅스 커맨드 라인
_2.2 클라우드 셸 개발 환경
_2.3 배시 셸과 명령어
__2.3.1 파일 목록
__2.3.2 실행 명령
__2.3.3 파일 탐색
__2.3.4 셸 입출력
__2.3.5 셸 설정
__2.3.6 셸 스크립트 작성
_2.4 클라우드 컴퓨팅 기반과 구성 요소
_2.5 클라우드 컴퓨팅 시작하기
_2.6 파이썬 벼락치기
_2.7 미니멀리스트를 위한 파이썬 튜토리얼
_2.8 프로그래머를 위한 수학 벼락치기
__2.8.1 기술 통계학과 정규분포
__2.8.2 최적화
__[역자 노트]
_2.9 머신러닝의 핵심 개념
_2.10 데이터 과학 해보기
_2.11 간단한 파이프라인 밑바닥부터 작성하기
_2.12 마치며
연습해보기
생각해보기

CHAPTER 3 컨테이너와 엣지 디바이스를 위한 MLOps
_3.1 컨테이너
__3.1.1 컨테이너 런타임
__3.1.2 컨테이너 생성하기
__3.1.3 컨테이너 실행하기
__3.1.4 컨테이너 모범 사례
__3.1.5 HTTP로 모델 서빙하기
_3.2 엣지 디바이스
__3.2.1 구글 코랄
__3.2.2 애저 퍼셉트
__3.2.3 텐서플로 허브
__3.2.4 구글 코랄 엣지 TPU 컴파일러
_3.3 완전 관리형 머신러닝 시스템을 위한 컨테이너
__3.3.1 MLOps 컨테이너 거래하기
__3.3.2 다양하게 활용되는 컨테이너
_3.4 마치며
연습해보기
생각해보기

CHAPTER 4 머신러닝 애플리케이션에 지속적 배포를 적용하기
_4.1 머신러닝 모델 패키징
_4.2 머신러닝 모델의 지속적 배포를 위한 코드형 인프라
_4.3 클라우드 파이프라인 사용하기
__4.3.1 모델 배포 제어하기
__4.3.2 모델 배포를 위한 테스팅 전략
_4.4 마치며
연습해보기
생각해보기

CHAPTER 5 AutoML과 KaizenML
_5.1 AutoML
__5.1.1 MLOps 산업 혁명
__5.1.2 AutoML vs KaizenML
__5.1.3 피처 스토어
_5.2 애플 생태계
__5.2.1 애플의 AutoML: Create ML
__5.2.2 애플의 Core ML
_5.3 구글의 AutoML과 엣지 컴퓨터 비전
_5.4 애저의 AutoML
_5.5 AWS AutoML
_5.6 오픈 소스 AutoML
__5.6.1 Ludwig
__5.6.2 FLAML
_5.7 모델 설명력
_5.8 마치며
연습해보기
생각해보기

CHAPTER 6 모니터링과 로깅
_6.1 클라우드 MLOps와 관찰가능성
__[역자 노트]
_6.2 로깅 기초
_6.3 파이썬에서 로깅 실습하기
__[역자 노트]
__6.3.1 로그 수준 설정하기
__6.3.2 여러 애플리케이션을 동시에 로깅하기
_6.4 모니터링과 관찰가능성
__6.4.1 모델 모니터링의 기초
__6.4.2 AWS 세이지메이커에서 드리프트 모니터링하기
_6.5 애저 머신러닝에서 드리프트 모니터링하기
_6.6 마치며
연습해보기
생각해보기


CHAPTER 7 AWS를 이용한 MLOps
_7.1 AWS에 입문하기
__7.1.1 AWS 제품 사용해보기
__7.1.2 AWS와 MLOps
_7.2 AWS를 이용한 MLOps 레시피
__7.2.1 명령행 인터페이스 도구
__7.2.2 플라스크 마이크로서비스
_7.3 AWS 람다 레시피
__7.3.1 AWS 람다-SAM: 로컬 환경에서 사용하기
__7.3.2 AWS 람다-SAM: 컨테이너화하여 배포하기
_7.4 현실의 문제를 해결하기 위한 AWS 머신러닝 제품과 조언
__[인터뷰] 스포츠 SNS 서비스의 사례
__[인터뷰] AWS 머신러닝 기술 전도사 줄리앙의 커리어 조언언
_7.5 마치며
연습해보기
생각해보기


CHAPTER 8 애저 환경과 MLOps
_8.1 애저 CLI와 파이썬 SDK
_8.2 인증
__8.2.1 서비스 주체
__8.2.2 API 서비스 인증
_8.3 컴퓨팅 인스턴스
_8.4 배포
__8.4.1 모델 등록
__8.4.2 데이터셋 버전 관리
__[역자 노트]
_8.5 컴퓨팅 클러스터에 모델 배포하기
__8.5.1 클러스터 구성하기
__8.5.2 모델 배포하기
_8.6 배포 문제 해결하기
__8.6.1 로그 검색하기
__8.6.2 애플리케이션 인사이트
__8.6.3 로컬 환경에서의 디버깅
_8.7 애저 머신러닝 파이프라인
__8.7.1 퍼블리싱 파이프라인
__8.7.2 애저 머신러닝 디자이너
_8.8 머신러닝 생애 주기
_8.9 마치며
연습해보기
생각해보기

CHAPTER 9 구글 클라우드 플랫폼과 쿠버네티스
_9.1 구글 클라우드 플랫폼 둘러보기
__9.1.1 지속적 통합과 지속적 배포
__9.1.2 hello world 쿠버네티스
__9.1.3 클라우드 네이티브 데이터베이스 선택과 설계
_9.2 구글 클라우드 플랫폼에서의 DataOps
_9.3 머신러닝 모델 운영
_9.4 마치며
연습해보기
생각해보기

CHAPTER 10 머신러닝 상호운용성
_10.1 상호운용성이 중요한 이유
_10.2 ONNX: Open Neural Network Exchange
__10.2.1 ONNX Model Zoo
__10.2.2 파이토치를 ONNX로 변환하기
__10.2.3 텐서플로를 ONNX로 변환하기
__10.2.4 애저에서 ONNX 모델 배포
_10.3 애플의 Core ML과 ONNX
_10.4 엣지 통합
_10.5 마치며
연습해보기
생각해보기


CHAPTER 11 MLOps 명령줄 도구와 마이크로서비스 구축
_11.1 파이썬 패키징
_11.2 Requirements 파일
_11.3 명령줄 도구
__11.3.1 데이터셋 린터 생성
__11.3.2 명령줄 도구 모듈화
_11.4 마이크로서비스
__11.4.1 서버리스 기능 만들기
__11.4.2 클라우드 기능 인증
__11.4.3 클라우드 기반 명령줄 인터페이스 구축
_11.5 머신러닝 명령줄 인터페이스 워크플로
_11.6 마치며
연습해보기
생각해보기


CHAPTER 12 MLOps 실사례 연구
_12.1 머신러닝에서 무지함이 주는 뜻밖의 이점
_12.2 스포츠 소셜 네트워크의 MLOps 프로젝트
__12.2.1 기계적인 반복 작업: 데이터 라벨링
__12.2.2 인플루언서 등급
__12.2.3 인공지능 프로덕트
_12.3 현실 vs 완벽한 기술
_12.4 MLOps의 중요한 과제
__12.4.1 윤리적 문제와 의도치 않은 결과
__12.4.2 운영 능력의 부족
__12.4.3 기술력에 집중할 것인가, 비즈니스에 집중할 것인가
__[인터뷰] MLOps 실무자 피에로 몰리노
__[인터뷰] MLOps 실무자 프란체스카 라제리
_12.5 MLOps 구현을 위한 마지막 권장 사항
__12.5.1 데이터 거버넌스와 사이버보안
__12.5.2 MLOps 구축 시 자주 언급되는 개념과 도구들
_12.6 마치며
연습해보기
생각해보기

부록 A. 기술 자격증
부록 B. MLOps를 위한 기술 포트폴리오 작성 Tip
책제원정보
ISBN 9791169211215
판형정보 496쪽 / 183 X 235mm
출판사 한빛미디어
출판일 2023-07-07 출간
교환 및 환불안내
도서 교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.
        (카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님의 변심으로 인한 교환 또는 반품시에는 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.

선택된 상품

  • MLOps 실전 가이드
    36,000원

총 주문금액

36,000