장바구니 담기 close

장바구니에 상품을 담았습니다.

단단한 심층강화학습

단단한 심층강화학습

  • 로라그레서 ,와룬켕
  • |
  • 제이펍
  • |
  • 2022-02-17 출간
  • |
  • 428페이지
  • |
  • 188 X 245 X 21 mm
  • |
  • ISBN 9791191600674
판매가

30,000원

즉시할인가

27,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
27,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




심층강화학습의 확고한 기반을 다지기 위한 완벽한 방법!
지금 당장 활용할 수 있는 심층강화학습의 이론 및 실무를 소개합니다.

이 책은 이론과 실무적 내용을 독특하게 결합한 심층강화학습 소개서입니다. 직관적인 설명에서 시작하여 심층강화학습 알고리즘에 대한 자세한 설명과 SLM Lab 라이브러리를 이용한 구현 방법으로 이어지고, 마지막으로는 심층강화학습을 실무에 적용하기 위한 세부 내용을 다룹니다.
기본적인 기계학습 개념에 대한 이해와 파이썬을 다룰 줄 아는 컴퓨터과학 전공 학생 및 소프트웨어 엔지니어 모두에게 최선의 선택이 될 것입니다.

주요 내용
? 심층강화학습 문제의 모든 핵심 내용을 다룹니다.
? REINFORCE, 사르사(SARSA), DQN, 이중DQN, 우선순위가 있는 경험재현(PER)과 같은 정책-기반 알고리즘과 가치-기반 알고리즘에 대해 알아봅니다.
? 행동자-비평자(Actor-Critic)와 근위 정책 최적화(PPO)와 같은 결합된 알고리즘에 대해 심도 있게 알아봅니다.
? 알고리즘이 동기 및 비동기 방식으로 병렬화되는 과정을 이해합니다.
? SLM Lab에서 알고리즘을 실행해 보고, 심층강화학습을 실무에 적용하기 위한 세부사항들을 학습합니다.
? 튜닝된 하이퍼파라미터를 사용한 결과를 통해 알고리즘을 탐험합니다.
? 심층강화학습 환경의 설계 방법을 이해합니다.


목차


옮긴이 머리말 xii
베타리더 후기 xiii
추천사 xv
시작하며 xvi
감사의 글 xxi

CHAPTER 01 강화학습 소개 1
1.1 강화학습 1
1.2 MDP로서의 강화학습 7
1.3 강화학습에서 학습하는 함수 11
1.4 심층강화학습 알고리즘 13
1.4.1 정책 기반 알고리즘 14
1.4.2 가치 기반 알고리즘 15
1.4.3 모델 기반 알고리즘 16
1.4.4 결합된 방법 17
1.4.5 이 책에서 다루는 알고리즘 18
1.4.6 활성정책과 비활성정책 알고리즘 19
1.4.7 요약 19
1.5 강화학습을 위한 심층학습 20
1.6 강화학습과 지도학습 22
1.6.1 오라클의 부재 23
1.6.2 피드백의 희소성 24
1.6.3 데이터 생성 24
1.7 요약 25

PART I 정책 기반 알고리즘과 가치 기반 알고리즘
CHAPTER 02 REINFORCE 29
2.1 정책 30
2.2 목적 함수 31
2.3 정책 경사 31
2.3.1 정책 경사 계산 33
2.4 몬테카를로 표본추출 36
2.5 REINFORCE 알고리즘 37
2.5.1 향상된 REINFORCE 38
2.6 REINFORCE 구현 39
2.6.1 최소 형태의 REINFORCE 구현 39
2.6.2 파이토치로 정책 생성하기 42
2.6.3 행동 추출 44
2.6.4 정책 손실 계산 45
2.6.5 REINFORCE 훈련 루프 46
2.6.6 활성정책 재현 메모리 47
2.7 REINFORCE 에이전트의 훈련 50
2.8 실험 결과 53
2.8.1 실험: 할인율 ? 의 효과 53
2.8.2 실험: 기준값의 효과 55
2.9 요약 57
2.10 더 읽을거리 57
2.11 역사 58

CHAPTER 03 살사(SARSA) 59
3.1 Q 함수와 V 함수 60
3.2 시간차 학습 63
3.2.1 시간차 학습에 대한 직관 66
3.3 살사의 행동 선택 73
3.3.1 탐험과 활용 74
3.4 살사 알고리즘 75
3.4.1 활성정책 알고리즘 76
3.5 살사의 적용 77
3.5.1 행동 함수: 엡실론 탐욕적 77
3.5.2 Q 손실의 계산 78
3.5.3 살사 훈련 루프 80
3.5.4 활성정책 배치 재현 메모리 81
3.6 살사 에이전트의 훈련 83
3.7 실험 결과 86
3.7.1 실험: 학습률의 효과 86
3.8 요약 87
3.9 더 읽을거리 88
3.10 역사 89

CHAPTER 04 심층 Q 네트워크(DQN) 91
4.1 DQN의 Q 함수 학습 92
4.2 DQN의 행동 선택 94
4.2.1 볼츠만 정책 97
4.3 경험 재현 100
4.4 DQN 알고리즘 101
4.5 DQN의 적용 103
4.5.1 Q 손실의 계산 103
4.5.2 DQN 훈련 루프 104
4.5.3 재현 메모리 105
4.6 DQN 에이전트의 훈련 108
4.7 실험 결과 111
4.7.1 실험: 신경망 아키텍처의 효과 111
4.8 요약 113
4.9 더 읽을거리 114
4.10 역사 114

CHAPTER 05 향상된 DQN 115
5.1 목표 네트워크 116
5.2 이중 DQN 119
5.3 우선순위가 있는 경험 재현(PER) 123
5.3.1 중요도 표본추출 125
5.4 수정된 DQN의 구현 126
5.4.1 네트워크 초기화 127
5.4.2 Q 손실의 계산 128
5.4.3 목표 네트워크의 업데이트 129
5.4.4 목표 네트워크를 갖는 DQN 130
5.4.5 이중 DQN 130
5.4.6 우선순위가 있는 경험 재현 131
5.5 아타리 게임을 위한 DQN 에이전트의 훈련 137
5.6 실험 결과 142
5.6.1 실험: 이중 DQN과 PER의 효과 142
5.7 요약 146
5.8 더 읽을거리 146

PART II 결합된 방법
CHAPTER 06 어드밴티지 행동자-비평자(A2C) 149
6.1 행동자 150
6.2 비평자 150
6.2.1 어드밴티지 함수 151
6.2.2 어드밴티지 함수에 대한 학습 155
6.3 A2C 알고리즘 156
6.4 A2C의 구현 159
6.4.1 어드밴티지 추정 160
6.4.2 가치 손실과 정책 손실의 계산 162
6.4.3 행동자-비평자 훈련 루프 163
6.5 네트워크 아키텍처 164
6.6 A2C 에이전트의 훈련 166
6.6.1 n단계 이득을 이용한 A2C를 퐁 게임에 적용 166
6.6.2 GAE를 이용한 A2C를 퐁 게임에 적용 169
6.6.3 두 발 보행자 문제에서 n단계 이득을 이용한 A2C 170
6.7 실험 결과 173
6.7.1 실험: n단계 이득의 효과 173
6.7.2 실험: GAE의 ?가 미치는 효과 175
6.8 요약 176
6.9 더 읽을거리 177
6.10 역사 177

CHAPTER 07 근위 정책 최적화(PPO) 179
7.1 대리목적 180
7.1.1 성능붕괴 180
7.1.2 목적 함수의 수정 182
7.2 근위 정책 최적화(PPO) 189
7.3 PPO 알고리즘 193
7.4 PPO의 구현 195
7.4.1 PPO 정책 손실의 계산 195
7.4.2 PPO 훈련 루프 196
7.5 PPO 에이전트의 훈련 198
7.5.1 퐁 게임을 위한 PPO 198
7.5.2 두 발 보행자를 위한 PPO 201
7.6 실험 결과 203
7.6.1 실험: GAE의 ?가 미치는 효과 204
7.6.2 실험: 클리핑 변수 ?의 효과 205
7.7 요약 207
7.8 더 읽을거리 208

CHAPTER 병렬화 방법 209
8.1 동기 병렬화 210
8.2 비동기 병렬화 212
8.2.1 호그와일드! 213
8.3 A3C 에이전트의 훈련 216
8.4 요약 219
8.5 더 읽을거리 219

CHAPTER 09 알고리즘 요약 221

PART III 실전을 위한 세부사항
CHAPTER 10 심층강화학습으로 작업하기 225
10.1 소프트웨어 공학적 기법 226
10.1.1 단위 테스트 226
10.1.2 코드 품질 232
10.1.3 깃 워크플로 233
10.2 디버깅 팁 236
10.2.1 생존 신호 236
10.2.2 정책 경사에 대한 진단 237
10.2.3 데이터에 대한 진단 238
10.2.4 전처리기 239
10.2.5 메모리 239
10.2.6 알고리즘 함수 240
10.2.7 신경망 240
10.2.8 알고리즘 간소화 243
10.2.9 문제 간소화 243
10.2.10 하이퍼파라미터 244
10.2.11 Lab 워크플로 244
10.3 아타리 트릭 245
10.4 심층강화학습 알마낵 249
10.4.1 하이퍼파라미터 표 249
10.4.2 알고리즘 성능 비교 252
10.5 요약 255

CHAPTER 11 SLM Lab 257
11.1 SLM Lab에 구현된 알고리즘 257
11.2 spec 파일 260
11.2.1 검색 스펙 구문 262
11.3 SLM Lab의 실행 265
11.3.1 SLM Lab의 명령어 265
11.4 실험 결과의 분석 266
11.4.1 실험 데이터의 개요 266
11.5 요약 268

CHAPTER 12 네트워크 아키텍처 269
12.1 신경망의 유형 269
12.1.1 다층 퍼셉트론(MLP) 270
12.1.2 합성곱신경망(CNN) 272
12.1.3 회귀신경망(RNN) 274
12.2 네트워크 그룹 선택을 위한 가이드 275
12.2.1 MDP와 POMDP 275
12.2.2 환경을 위한 네트워크 선정 279
12.3 Net API 282
12.3.1 입력과 출력 층위 모양의 추정 284
12.3.2 네트워크의 자동 생성 286
12.3.3 훈련 단계 289
12.3.4 기반 메소드의 노출 290
12.4 요약 291
12.5 더 읽을거리 292

CHAPTER 13 하드웨어 293
13.1 컴퓨터 294
13.2 데이터 유형 300
13.3 강화학습에서 데이터 유형 최적화 302
13.4 하드웨어의 선택 307
13.5 요약 308

CHAPTER 14 상태 311
14.1 상태의 예제 312
14.2 상태의 완결성 319
14.3 상태의 복잡성 320
14.4 상태 정보 손실 325
14.4.1 이미지 그레이스케일링 325
14.4.2 이산화 326
14.4.3 해시 출동 327
14.4.4 메타정보 손실 327
14.5 전처리 331
14.5.1 표준화 332
14.5.2 이미지 처리 333
14.5.3 시간적 전처리 335
14.6 요약 339

CHAPTER 15 행동 341
15.1 행동의 예제 341
15.2 행동의 완결성 345
15.3 행동의 복잡성 347
15.4 요약 352
15.5 더 읽을거리: 일상에서의 행동 설계 353

CHAPTER 16 보상 357
16.1 보상의 역할 357
16.2 보상 설계의 가이드라인 359
16.3 요약 364

CHAPTER 17 전이 함수 365
17.1 실현 가능성 확인 366
17.2 현실성 확인 368
17.3 요약 371

APPENDIX A 심층강화학습 타임라인 372
APPENDIX B 환경의 예제 374
B.1 이산적 환경 375
B.1.1 CartPole-v0 375
B.1.2 MountainCar-v0 376
B.1.3 LunarLander-v2 377
B.1.4 PongNoFrameskip-v4 378
B.1.5 BreakoutNoFrameskip-v4 378
B.2 연속 환경 379
B.2.1 Pendulum-v0 379
B.2.2 BipedalWalker-v2 380

에필로그 381

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.