장바구니 담기 close

장바구니에 상품을 담았습니다.

MLFlow를 활용한 MLOps

MLFlow를 활용한 MLOps

  • 스리다르알라 ,수만칼리안아다리
  • |
  • 에이콘출판
  • |
  • 2022-02-28 출간
  • |
  • 304페이지
  • |
  • 188 X 235 X 17 mm
  • |
  • ISBN 9791161756134
판매가

30,000원

즉시할인가

27,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
27,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




◈ 이 책에서 다루는 내용 ◈
◆ 기본 데이터 분석 수행 및 scikit-learn 및 PySpark 모델 구축
◆ 모델 학습, 테스트 및 검증(하이퍼파라미터 튜닝)
◆ MLOps의 정의와 이상적인 MLOps 구축
◆ 기존 또는 향후 프로젝트에 MLFlow를 쉽게 통합
◆ 클라우드에 모델을 배포하고 예측 수행


◈ 이 책의 대상 독자 ◈
이 책은 머신러닝 초보자부터 고급 머신러닝 엔지니어, 실험의 더 나은 구성법을 배우고자 하는 머신러닝 연구원까지 머신러닝에 관심 있는 모든 독자를 대상으로 한다.


◈ 이 책의 구성 ◈
1, 2장은 신용카드 데이터셋에 기반한 이상 검출기 모델에 MLOps 원리를 통합하는 방법을 다룬다.
3장에서는 MLOps가 무엇인지, 작동 방식 및 어떻게 유용할 수 있는지에 관한 이유에 대해 소개한다.
4장에서는 기존 프로젝트에서 MLFlow를 구현하고 활용해 몇 줄의 코드만으로 MLOps의 이점을 누릴 수 있는 방법에 대해 자세히 설명한다.
5장, 6장, 7장에서는 모델을 운영해 AWS, Microsoft Azure 및 Google Cloud에 각각 구축할 수 있는 방법을 다룬다.
7장에서는 가상 머신에서 모델을 호스팅하고 외부 소스에서 서버에 연결해 예측을 수행하는 방법을 설명한다. 따라서 설명서에 설명된 MLFlow 기능이 오래되면 언제든지 이 방식을 사용해 클라우드상의 일부 클러스터에서 모델을 서비스할 수 있다.
마지막 장인 부록에서는 MLFlow를 만든 Databricks를 활용해 MLFlow 실험을 구성하고 모델을 배치하는 방법에 대해 설명한다.


목차


Chapter 1. 시작하기: 데이터 분석
__소개 및 전제
__신용카드 데이터세트
__데이터세트 적재
__정상 데이터 및 부정 데이터
__플로팅
__요약
Chapter 2. 모델 구축
__소개
__scikit-learn
__데이터 프로세싱
__모델 학습
__모델 평가
__모델 검증
__PySpark
__데이터 처리
__모델 학습
__모델 평가
__요약
Chapter 3. MLOps는 무엇인가?
__소개
__MLOps 구축
__수동 구현
__지속적인 모델 전달
__파이프라인의 지속적인 통합/지속적인 전달
__구축에 대한 회고
__파이프라인 및 자동화
__파이프라인 진행 여정
__모델 선택
__데이터 전처리
__학습 프로세스
__모델 평가
__모델 검증
__모델 요약
__MLOps 구현 방법
__요약
Chapter 4. MLFlow 소개
__소개
__사이킷런(Scikit-Learn)을 활용한 MLFlow
__데이터 처리
__MLFlow를 통한 학습 및 평가
__MLFlow 실행 로깅 및 확인
__로깅된 모델 적재
__MLFlow를 사용한 모델 검증(파라미터 튜닝)
__파라미터 튜닝 - Guided Search
__MLFlow 및 기타 프레임워크 TensorFlow 2.0을 사용한 MLFlow(Keras)
__데이터 처리
__MLFlow 실행 - 학습 및 평가
__MLFlow 모델 적재
__PyTorch를 사용한 MLFlow
__데이터 처리
__MLFlow 실행 - 학습 및 평가
__MLFlow UI - 실행 체크
__MLFlow 모델 적재
__PySpark 을 사용하는 MLFlow
__데이터 처리
__MLFlow 실행 - 학습, UI 및 MLFlow 모델 적재
__로컬 모델 서빙 모델 배포
__모델 쿼리
__스케일링 없는 쿼리
__스케일링을 사용한 쿼리
__배치 쿼리
__요약
Chapter 5. AWS에 배포
__소개
__AWS 구성
__AWS SageMaker에 모델 배포
__예측하기
__모델 전환
__배포된 모델 제거
__요약
Chapter 6. Azure에 배포
__소개
__Azure 구성
__Azure에 배포(개발 단계)
__예측하기
__운영 환경에 배포
__예측하기
__자원 정리하기
__요약
Chapter 7. Google에 배포
__소개
__Google 구성
__버킷 스토리지
__가상 머신 구성
__방화벽 구성
__모델 배포 및 쿼리
__배포 업데이트 및 제거
__자원 정리하기
__요약
Appendix. Databricks
__소개
__Databricks에서 실험 실행
__Azure에 배포
__워크스페이스에 연결
__모델 쿼리
__MLFlow 모델 레지스트리
__요약

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.