장바구니 담기 close

장바구니에 상품을 담았습니다.

머신러닝을 활용한 인공지능 개발

머신러닝을 활용한 인공지능 개발

  • 송주영
  • |
  • 황소걸음 아카데미
  • |
  • 2019-07-20 출간
  • |
  • 221페이지
  • |
  • 188 X 258 X 14 mm /486g
  • |
  • ISBN 9791186821398
판매가

15,000원

즉시할인가

14,850

배송비

2,300원

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
14,850

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




빅데이터를 활용한 인공지능 개발
Artificial Intelligence Development Using Big Data

빅데이터는 데이터 형식이 복잡하고 방대할 뿐만 아니라 그 생성속도가 매우 빨라 기존의 데이터 처리방식이 아닌 새로운 관리 및 분석 방법을 필요로 한다. 이에 따라 방대한 데이터를 수집·관리하면서 복잡하고 다양한 사회현상을 분석할 수 있는 능력을 지닌 데이터 사이언티스트의 역할은 그 중요성이 더해가고 있다.

그동안 우리 주변의 사회현상을 예측하기 위해 모집단을 대표할 수 있는 표본을 추출하여 표본에서 생산된 통계량으로 모집단의 모수를 추정해 왔다. 모집단을 추정하기 위해 표본을 대상으로 예측하는 방법은 기존의 이론모형이나 연구자가 결정한 모형에 근거하여 예측하기 때문에 제한된 결과만 알 수 있고, 다양한 변인 간의 관계를 파악하는 데는 한계가 있다. 특히 빅데이터 시대에는 해당 주제와 연관된 모든 데이터를 대상으로 하기 때문에 표본으로 모수를 추정하기 위해 준비된 모형을 적용하고 추정하는 가설검정의 절차가 생략될 수도 있다. 따라서 빅데이터를 학습하여 모형(인공지능)을 개발하는 머신러닝 방법이 다양한 변인들의 관계를 보다 정확히 예측할 수 있다. 머신러닝으로 인공지능을 개발하기 위해서는 다양한 분야에서 데이터의 잡음이 제거된 양질의 학습데이터가 생산되어야 한다.

저자들은 그동안 급속히 변화하는 사회현상을 예측하여 선제적으로 대응하기 위해 정형화된 빅데이터와 소셜 빅데이터를 활용한 연구에 노력을 경주해 왔다. 이 책 역시 그러한 연구의 결과로, 실제로 공공 빅데이터를 분석하여 미래를 예측하기 위한 인공지능을 개발하고 활용하기 위한 전 과정을 자세히 담았다.

빅데이터 분석을 통하여 급속히 변화하는 사회현상을 예측하고 창조적인 결과물을 이끌어내고자 하는 모든 분들에게 이 책이 실질적인 도움이 되기를 바란다. 나아가 머신러닝을 활용한 빅데이터 분석을 통하여 관련 분야의 인공지능 개발 및 학문적 발전에 일조할 수 있기를 진심으로 희망한다.

[이 책의 특징]

첫째, 이 책의 내용은 2권으로 구성되어 있다. 제1권은 빅데이터를 활용하여 인공지능을 개발하기 위해 필요한 지식인 통계분석의 전 과정을 설명한《빅데이터를 활용한 통계분석》이고, 제2권은 인공지능을 개발하기 위해 머신러닝 예측모델링의 전 과정을 설명한《머신러닝을 활용한 인공지능 개발》이다.
둘째, 제1권의 통계분석에는 오픈소스 프로그램인 R과 SPSS를 비교하여 설명하였다.
셋째, 제2권의 머신러닝 모델링은 오픈소스 프로그램인 R을 사용하였다.


목차


머리말

1장 빅데이터를 활용한 머신러닝 학습데이터 생성

01 서론
02 공공 빅데이터 수집
03 머신러닝 학습데이터 생성
연습문제
참고문헌

2장 머신러닝 개념과 모델링

01 서론
02 머신러닝 학습데이터
03 머신러닝 기반 비만 예측모형 개발
3.1 나이브 베이즈 분류모형
1) 비만(정상, 비만) 예측모형
2) 비만(저체중, 정상, 비만) 예측모형
3.2 로지스틱 회귀모형
1) 비만(정상, 비만) 예측모형
2) 비만(저체중, 정상, 비만) 예측모형
3.3 랜덤포레스트 모형
1) 비만(정상, 비만) 예측모형
2) 비만(저체중, 정상, 비만) 예측모형
3.4 의사결정나무 모형
가. R 프로그램 활용
1) 비만(정상, 비만) 예측모형
2) 비만(저체중, 정상, 비만) 예측모형
나. SPSS 프로그램 활용
1) 범주형 독립변수를 활용한 비만(정상, 비만) 예측모형
2) 범주형 독립변수를 활용한 비만(저체중, 정상, 비만) 예측모형
3) 연속형 독립변수를 활용한 비만(정상, 비만) 예측모형
4) 범주형과 연속형 독립변수를 활용한 비만(저체중, 정상, 비만)
예측모형
3.5 신경망 모형
1) 비만(정상, 비만) 예측모형
2) 비만(저체중, 정상, 비만) 예측모형
3.6 서포트벡터머신 모형
1) 비만(정상, 비만) 예측모형
2) 비만(저체중, 정상, 비만) 예측모형
3.7 연관분석
1) 독립변수 간 연관 분석
2) 독립변수와 종속변수 간 연관 분석
3.8 군집분석
1) 군집분석
2) 세분화
04 머신러닝 모형평가
4.1 오분류표를 이용한 머신러닝 모형의 평가
1) na?veBayes 분류모형 평가
2) 신경망 모형 평가
3) 로지스틱 회귀모형 평가
4) 서포트벡터머신 모형 평가
5) 랜덤포레스트 모형 평가
6) 의사결정나무 모형 평가
4.2 ROC 곡선을 이용한 머신러닝 모형의 평가
1) 범주형 독립변수를 활용한 비만(정상, 비만) 예측모형 ROC 평가
2) 범주형과 연속형 독립변수를 활용한 비만(정상, 비만) 예측모형 ROC 평가
4.3 머신러닝 모형의 성능향상 방안

3장 인공지능 개발 및 활용

1. 입력변수가 출력변수에 미치는 영향력(예측확률) 산출하기
2. 입력변수만 있고 종속변수가 없는 학습데이터에 랜덤포레스트 예측모형에서 예측한 종속변수를 생성하여 학습데이터에 추가하기
3. 학습데이터의 분류와 예측데이터의 분류가 동일한 데이터 만들기
4. 기존의 학습데이터와 양질의 학습데이터의 평가
5. 머신러닝으로 인공지능 만들기
연습문제

참고문헌
찾아보기

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.