장바구니 담기 close

장바구니에 상품을 담았습니다.

텐서플로를 활용한 머신러닝

텐서플로를 활용한 머신러닝 - 그림으로 쉽게 개념부터 익히는 머신러닝, 딥러닝 입문서

  • 니샨트수클라
  • |
  • 한빛미디어
  • |
  • 2019-02-01 출간
  • |
  • 312페이지
  • |
  • 183 X 235 mm
  • |
  • ISBN 9791162241073
판매가

30,000원

즉시할인가

27,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
27,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




이 책은 텐서플로의 기초부터 시작하여 머신러닝의 기본이라 할 수 있는 회귀, 군집, 은닉 마르코프 모델을 거쳐 오토인코더, 강화학습, 합성곱 신경망, 순환 신경망, 시퀀스2시퀀스 모델, 유틸리니까지 난이도를 높여갑니다. 상세한 설명을 코드와 함께 제시해 이해하기 쉽게 구성하였습니다. 예제는 아주 기초적인 파이썬 지식만 있으면 대부분 이해하고 실행해볼 수 있습니다. 일부 심화 예제는 객체지향 프로그래밍 배경지식을 필요로 합니다.

1부_ 머신러닝의 개념과 텐서플로의 주요 역할을 살펴봅니다.
1장에서는 머신러닝의 용어와 이론을 소개하며, 2장에서는 텐서플로 개발을 시작하기 위한 모든 것을 알려드립니다. 머신러닝과 텐서플로에 익숙하지 않은 분이라면 1장과 2장을 꼭 읽기 바랍니다.

2부_ 그동안 검증된 기본적인 알고리즘을 다룹니다.
3장부터 6장까지 회귀, 분류, 군집, 은닉 마르코프 모델을 학습합니다. 여기에서 학습하는 알고리즘은 앞으로 여러분이 머신러닝 거의 전 분야에 걸쳐 접할 내용입니다.

3부_ 텐서플로의 진정한 가치인 신경망을 소개합니다.
7장부터 12장까지 오토인코더, 강화학습, 합성곱 신경망, 순환 신경망, 시퀀스2시퀀스 모델, 유틸리티를 학습합니다.


목차


PART 1 머신러닝의 비밀병기

CHAPTER 1 머신러닝으로의 여행
__1.1 머신러닝 기초
__1.2 데이터의 표현형과 피처
__1.3 거리 지표
__1.4 학습의 종류
__1.5 텐서플로
__1.6 앞으로 배울 내용
__1.7 요약

CHAPTER 2 텐서플로 기초학습
__2.1 텐서플로 동작시키기
__2.2 텐서의 표현
__2.3 연산자 생성하기
__2.4 세션을 이용하여 연산자 실행하기
__2.5 주피터 노트북에서 코드 작성하기
__2.6 변수 사용하기
__2.7 변수를 저장하고 불러오기
__2.8 텐서보드를 이용한 데이터의 시각화
__2.9 요약

PART 2 핵심 학습 알고리즘

CHAPTER 3 선형 회귀
__3.1 공식 표기법
__3.2 선형 회귀
__3.3 다항 모델
__3.4 정규화
__3.5 선형 회귀의 응용
__3.6 요약

CHAPTER 4 데이터의 분류
__4.1 공식 표기법
__4.2 성능 측정하기
__4.3 분류를 위한 선형 회귀
__4.4 로지스틱 회귀 사용하기
__4.5 다항 분류자
__4.6 분류의 응용
__4.7 요약

CHAPTER 5 자동화된 데이터 군집
__5.1 텐서플로에서의 파일 탐색
__5.2 오디오로부터의 피처 추출
__5.3 K-means 군집
__5.4 오디오 세그먼테이션
__5.5 자기조직화 지도를 이용한 군집
__5.6 군집의 응용
__5.7 요약

CHAPTER 6 은닉 마르코프 모델
__6.1 해석하기 어려운 모델의 예
__6.2 마르코프 모델
__6.3 은닉 마르코프 모델
__6.4 포워드 알고리즘
__6.5 비터비 디코딩
__6.6 은닉 마르코프 모델의 사용
__6.7 은닉 마르코프 모델의 응용
__6.8 요약

PART 3 신경망 패러다임

CHAPTER 7 오토인코더 살펴보기
__7.1 신경망
__7.2 오토인코더
__7.3 배치 학습
__7.4 이미지 처리
__7.5 오토인코더의 응용
__7.6 요약

CHAPTER 8 강화학습
__8.1 공식 표기법
__8.2 강화학습 적용하기
__8.3 강화학습 구현하기
__8.4 강화학습 응용 사례
__8.5 요약

CHAPTER 9 합성곱 신경망
__9.1 신경망의 문제점
__9.2 합성곱 신경망
__9.3 이미지 준비하기
__9.4 텐서플로에서 합성곱 신경망 실행하기
__9.5 성능 개선을 위한 몇 가지 팁
__9.6 합성곱 신경망의 응용
__9.7 요약

CHAPTER 10 순환 신경망
__10.1 맥락 정보
__10.2 순환 신경망 소개
__10.3 순환 신경망의 구현
__10.4 시계열 데이터 예측 모델
__10.5 순환 신경망의 응용
__10.6 요약

CHAPTER 11 챗봇을 위한 시퀀스2시퀀스 모델
__11.1 분류와 RNN 기반에서 구축하기
__11.2 Seq2seq 아키텍처
__11.3 벡터를 이용한 기호의 표기
__11.4 종합하기
__11.5 대화 데이터 수집
__11.6 요약

CHAPTER 12 유틸리티
__12.1 선호 모델
__12.2 이미지 임베딩
__12.3 이미지 랭킹
__12.4 요약
__12.5 향후 학습에 대한 제언

APPENDIX 설치 가이드
__A.1 도커를 이용해 텐서플로 설치하기
__A.2 맷플롯립 설치하기

찾아보기

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.