장바구니 담기 close

장바구니에 상품을 담았습니다.

프랙티컬 머신 러닝

프랙티컬 머신 러닝

  • 수닐라 골라푸디
  • |
  • 에이콘출판
  • |
  • 2017-05-25 출간
  • |
  • 572페이지
  • |
  • 188 X 235 mm
  • |
  • ISBN 9788960777170
판매가

35,000원

즉시할인가

31,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
31,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

★ 이 책에서 다루는 내용 ★

■ 복잡한 데이터를 다루기 위한 여러 가지 알고리즘과 기술의 구현
■ 파이썬, R, Julia과 같은 데이터 사이언스 분야의 가장 인기 있는 프로그래밍 언어
■ 데이터의 효율적인 관리와 처리를 위한 Spark, Mahout, 하둡의 연동 기법
■ 머신 러닝 기술을 실제 문제에 적용하기 위한 최적의 방안
■ 딥러닝에 대한 심화 학습과 머신 러닝의 첨단 기술에 신경망 알고리즘 활용 방법
■ 머신 러닝의 향후 전망과 폴리글롯 일관성, 시맨틱 데이터에 관한 심층 학습

★ 이 책의 대상 독자 ★

머신 러닝을 실제로 다루고 실제 애플리케이션도 개발하는 데이터 과학자를 위한 책이다. 머신 러닝과 예측 분석(predictive analytics)의 기본 개념부터 향후 빅데이터의 혁명을 리드할 최신 기술에 이르기까지 빅데이터 관련 분야의 모든 것을 다룬다. 따라서 빅데이터 관련 업무를 맡고 있는 모든 사람에게 이 책이 꼭 필요할 것임을 확신한다. 아울러 파이썬이나 R과 같은 프로그래밍 지식과 수학에 대한 지식이 있으면 훨씬 유리할 수 있다.

★ 이 책의 구성 ★

1장, '머신 러닝의 소개'에서는 머신 러닝의 기본 개념과 머신 러닝의 의미에 대해 전반적으로 알아본다. 머신 러닝을 알기 쉽게 정의하고, 머신 러닝 분야에서 사용되는 전문 용어를 소개한다.
2장, '머신 러닝과 대규모 데이터셋'에서는 대규모 데이터셋, 공통된 특징, 반복되는 문제,데이터 규모가 폭발적으로 증가하는 이유, 빅데이터에 대한 효과적인 접근 방법 등을 다룬다.
3장 '하둡 아키텍처와 하둡 에코시스템'에서는 핵심 프레임워크부터 하둡 에코시스템의 컴포넌트에 이르기까지 하둡에 대한 전반적인 내용을 다룬다. 3장을 끝까지 학습하고 나면 하둡을 설치하고 맵리듀스 함수를 실행시킬 수 있는 역량을 갖출 수 있다 또한 하둡 환경을 실행시키고 관리하는 기법과 커맨드라인을 기반으로 사용하는 방법도 알 수 있다.
4장, '머신 러닝 관련 툴과 라이브러리, 프레임워크'에서는 머신 러닝을 구현할 때 어떤 종류의 오픈소스를 사용할 수 있는지 설명한다. 아울러 아파치 머하웃(Apache Mahout), 파이썬(Python), R, 줄리아(Julia), 아파치 스파크(Apache Spark의 MLlib) 같은 다양한 라이브러리,툴, 프레임워크를 설치,개발,실행시킬 수 있는 방법도 알아본다. 하둡이라는 빅데이터 플랫폼에서 이런 종류의 프레임워크를 어떻게 통합하는지도 다룬다.
5장, '의사결정 트리 기반 학습'에서는 분류와 회귀 문제를 해결하는 방법으로 의사 결정 트리에 기반을 둔 지도 학습법을 알아본다. 트리를 분할하고, 가지치기 하는 방법, 어트리뷰트를 선정하는 방법을 자세히 살펴본다. 또한 CART, C4.5, 랜덤 포레스트, 최신 의사 결정 트리 기술도 알아본다.
6장, '인스턴스 기반 학습과 커널 기법 기반 학습'에서는 2가지 학습 알고리즘인 인스턴스 기반 기법과 커널 기법에 대해 알아본다. 이들은 분류와 예측 문제를 주로 다루는 데 사용된다. 인스턴스 기반 학습의 대표 알고리즘인 KNN 알고리즘에 대해 자세히 학습한다. 커널 기반 기법에서는 예제를 통해 서포트 벡터 머신 알고리즘을 자세히 알아본다.
7장, '연관 규칙 기반 학습'에서는 연관 규칙(association rule)을 기반으로 한 학습 기법과 대표 알고리즘인 Apriori와 FP-growth에 대해 자세히 알아본다. 많이 알려진 예제를 바탕으로 Apriori와 FP-growth 알고리즘을 어떻게 빈발 패턴 마이닝(Frequent pattern mining)에 적용하는지 알고리즘의 각 단계별로 자세히 알아본다.
8장, '클러스터링 기반 학습'에서는 비지도 학습 관점에서 클러스터링 기반 학습법을 다룬다. K-평균 클러스터링 알고리즘에 대해 자세히 알아보고, 이를 파이썬, R, 줄리아, 스파크, 머하웃 등을 이용해 어떻게 구현하는지 알아본다.
9장, '베이지언 학습'에서는 베이지언 머신 러닝에 대해 다룬다. 또한 통계학에 관한 핵심 개념을 주요 용어들을 바탕으로 자세히 알아본다. 베이즈 정리에 대해 깊이 있게 알아보고, 이를 실제 사례에 어떻게 적용하는지 예제를 통해 알아본다.
10장, '회귀 기반 학습'에서는 회귀 분석에 기반을 둔 머신 러닝에 대해 알아보고, 구체적으로 파이썬, R, 줄리아, 스파크 등을 이용해 선형 회귀와 로지스틱 회귀 모델을 어떻게 구현하는지도 알아본다. 또한 분산, 공분산, ANOVA 같은 통계학 관련 지식도 함께 알아본다. 실제 사례에 적용하는지 예제를 이용해 회귀 모델을 깊이 있게 다룬다.
11장, '딥러닝'에서는 신경 전달 조직인 뉴런에 대해 알아보고, 이를 이용해 어떻게 인공 뉴런을 함수와 연결 지을 수 있는지 설명한다. 신경망의 핵심 개념을 학습하고, 이를 바탕으로 다중 계층화 구조가 어떻게 동작하는지 파악한다. 행렬 곱셈 연산에 사용되는 주요 활성화 함수에 대해서도 알아본다.
12장, '강화 학습'에서는 최신 학습 기술 중 하나인 강화 학습에 대해 알아본다. 전통적인 지도 학습 및 비지도 학습과 강화 학습이 어떻게 다른지 살펴보고, 예제를 이용해 마르코프 결정 프로세스(MDP)가 어떻게 동작하는지 알아본다.
13장, '앙상블 학습'에서는 다양한 머신 러닝 기법을 대상으로 앙상블 학습을 알아본다. 실제 적용 가능한 예제를 이용해 지도 앙상블 학습법에 대해 알아본다. 끝으로 R, 파이썬(scikit-learn), 줄리아, 스파크 머신 러닝 툴을 이용한 기울기 상승 알고리즘(Gradient Boosting algorithm)과 아파치 머하웃 라이브러리를 이용한 추천 엔진에 대해서도 소스코드를 이용해 직접 실습해본다.
14장, '머신 러닝을 위한 차세대 데이터 아키텍처'에서는 머신 러닝의 개발 측면을 중점적으로 다룬다. 전통적인 분석 플랫폼은 무엇이고, 최근에 많이 증가하고 있는 데이터 요구 사항과는 왜 잘 맞지 않는지 등을 자세히 알아본다. 새로운 데이터 아키텍처 패러다임을 이끌고 있는 아키텍처 드라이버인 람다 이키텍처(Lambda architecture), 폴리글롯 일관성(polyglot persistence), 다중 모델 기반 데이터 아키텍처에 대해서도 학습한다. 매끄러운 데이터 통합이 이뤄질 수 있도록 시맨틱 아키텍처를 어떻게 활용하면 되는지도 살펴본다.

저자소개

저자 수닐라 골라푸디(Sunila Gollapudi)는 북미 금융 솔루션 회사인 브로드리지 파이낸셜 솔루션(Broadridge Financial Solutions) 인도 현지 법인에서 기술 이사직을 맡고 있다. 14년간 서비스 IT 업계에서 개발 경험을 쌓아왔다. 현재 인도 법인 아키텍처 센터를 리드하고 있으며, 빅데이터와 데이터 과학 부문에서 핵심 역할을 담당 중이다. 브로드리지에서 근무하기 전에는 글로벌 수준의 조직 관리를 성공적으로 수행했을 뿐만 아니라, 자바(Java), 분산 아키텍처, 빅데이터 기술, 고급 분석 기술(Advanced analytics), 머신 러닝, 시맨틱 기술, 데이터 통합 솔루션 기술 등에서도 탁월한 전문성을 보였다.
현재 브로드리지의 글로벌 기술 리더십과 혁신 포럼을 맡고 있으며, 최근 IEEE에서도 시맨틱 기술과 비즈니스 데이터 레이크(data lake)에 관한 공적을 인정받기도 했다. 빠른 속도로 발전하는 신기술을 글로벌 차원에서 어떤 기술 영역과 관련 있는지 잘 파악하고 연결하는 탁월한 능력이 있으며, 비즈니스 면에서도 사안에 대한 실질적인 아키텍처 솔루션을 제시하는 전문성을 발휘하고 있다.
컴퓨터 과학 대학원 과정에서 빅데이터 웨어하우스 솔루션, 그린플럼(Greenplum)에 관해 『Getting Started with Greenplum for Big Data Analytics』(Packt, 2013)라는 저서를 출간하기도 했다.
한편 인도의 전통춤에도 관심이 많아서 국내 대회, 국제 대회에 참가할 수준의 실력도 갖췄으며, 그림 그리기 같은 취미도 갖고 있다. 물론 가장 중요한 한 가정의 엄마이자 아내 역할도 훌륭하게 해내고 있다.

도서소개

수많은 데이터에서 공통된 특징과 상호 연관성 파악해 의미 있는 판단과 예측을 이끄는 데 있어 머신 러닝의 중요성은 계속 높아지고 있다. 머신 러닝에 대한 기초적인 내용뿐만 아니라, 머신 러닝을 빅데이터에 어떻게 적용할 것인지도 자세하게 설명한다. 빅데이터 기술의 근간이 된 하둡(Hadoop)에 대한 기초와 다양한 빅데이터 관련 도구를 친절하게 소개해, 이것을 빅데이터 환경에서 사용할 수 있게 도와준다.

머신 러닝 관점에서는 지도형 학습 기법, 비지도형 학습 기법 등 기본적인 내용 외에도 딥러닝, 강화 학습, 앙상블 기법 등에 대한 개념 설명과 함께 이론적 배경을 충실히 다룬다. 특히, 실제 업무에서 활용도를 높일 수 있도록 각 장 마지막에 R, Spark, Python, Julia 등 다양한 언어를 이용한 알고리즘의 구현 방안도 소개한다.

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.