수많은 데이터에서 공통된 특징과 상호 연관성 파악해 의미 있는 판단과 예측을 이끄는 데 있어 머신 러닝의 중요성은 계속 높아지고 있다. 머신 러닝에 대한 기초적인 내용뿐만 아니라, 머신 러닝을 빅데이터에 어떻게 적용할 것인지도 자세하게 설명한다. 빅데이터 기술의 근간이 된 하둡(Hadoop)에 대한 기초와 다양한 빅데이터 관련 도구를 친절하게 소개해, 이것을 빅데이터 환경에서 사용할 수 있게 도와준다.
머신 러닝 관점에서는 지도형 학습 기법, 비지도형 학습 기법 등 기본적인 내용 외에도 딥러닝, 강화 학습, 앙상블 기법 등에 대한 개념 설명과 함께 이론적 배경을 충실히 다룬다. 특히, 실제 업무에서 활용도를 높일 수 있도록 각 장 마지막에 R, Spark, Python, Julia 등 다양한 언어를 이용한 알고리즘의 구현 방안도 소개한다.